I Feel I Feel You: A Theory of Mind Experiment in Games
Zusammenfassung
In this study into the player’s emotional theory of mind (ToM) of gameplaying agents, we investigate how an agent’s behaviour and the player’s own performance and emotions shape the recognition of a frustrated behaviour. We focus on the perception of frustration as it is a prevalent affective experience in human-computer interaction. We present a testbed game tailored towards this end, in which a player competes against an agent with a frustration model based on theory. We collect gameplay data, an annotated ground truth about the player’s appraisal of the agent’s frustration, and apply face recognition to estimate the player’s emotional state. We examine the collected data through correlation analysis and predictive machine learning models, and find that the player’s observable emotions are not correlated highly with the perceived frustration of the agent. This suggests that our subject’s ToM is a cognitive process based on the gameplay context. Our predictive models—using ranking support vector machines—corroborate these results, yielding moderately accurate predictors of players’ ToM.
- Vollständige Referenz
- BibTeX
Melhart, D., Yannakakis, G. N. & Liapis, A.,
(2020).
I Feel I Feel You: A Theory of Mind Experiment in Games.
KI - Künstliche Intelligenz: Vol. 34, No. 1.
Springer.
(S. 45-55).
DOI: 10.1007/s13218-020-00641-2
@article{mci/Melhart2020,
author = {Melhart, David AND Yannakakis, Georgios N. AND Liapis, Antonios},
title = {I Feel I Feel You: A Theory of Mind Experiment in Games},
journal = {KI - Künstliche Intelligenz},
volume = {34},
number = {1},
year = {2020},
,
pages = { 45-55 } ,
doi = { 10.1007/s13218-020-00641-2 }
}
author = {Melhart, David AND Yannakakis, Georgios N. AND Liapis, Antonios},
title = {I Feel I Feel You: A Theory of Mind Experiment in Games},
journal = {KI - Künstliche Intelligenz},
volume = {34},
number = {1},
year = {2020},
,
pages = { 45-55 } ,
doi = { 10.1007/s13218-020-00641-2 }
}
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.1007/s13218-020-00641-2
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Feedback abschicken
Mehr Information
ISSN: 1610-1987
Datum: 2020
Typ: Text/Journal Article