Analysis of Political Debates through Newspaper Reports: Methods and Outcomes
Abstract
Discourse network analysis is an aspiring development in political science which analyzes political debates in terms of bipartite actor/claim networks. It aims at understanding the structure and temporal dynamics of major political debates as instances of politicized democratic decision making. We discuss how such networks can be constructed on the basis of large collections of unstructured text, namely newspaper reports. We sketch a hybrid methodology of manual analysis by domain experts complemented by machine learning and exemplify it on the case study of the German public debate on immigration in the year 2015. The first half of our article sketches the conceptual building blocks of discourse network analysis and demonstrates its application. The second half discusses the potential of the application of NLP methods to support the creation of discourse network datasets.
- Citation
- BibTeX
Lapesa, G., Blessing, A., Blokker, N., Dayanik, E., Haunss, S., Kuhn, J. & Padó, S.,
(2020).
Analysis of Political Debates through Newspaper Reports: Methods and Outcomes.
Datenbank-Spektrum: Vol. 20, No. 2.
Springer.
(S. 143-153).
DOI: 10.1007/s13222-020-00344-w
@article{mci/Lapesa2020,
author = {Lapesa, Gabriella AND Blessing, Andre AND Blokker, Nico AND Dayanik, Erenay AND Haunss, Sebastian AND Kuhn, Jonas AND Padó, Sebastian},
title = {Analysis of Political Debates through Newspaper Reports: Methods and Outcomes},
journal = {Datenbank-Spektrum},
volume = {20},
number = {2},
year = {2020},
,
pages = { 143-153 } ,
doi = { 10.1007/s13222-020-00344-w }
}
author = {Lapesa, Gabriella AND Blessing, Andre AND Blokker, Nico AND Dayanik, Erenay AND Haunss, Sebastian AND Kuhn, Jonas AND Padó, Sebastian},
title = {Analysis of Political Debates through Newspaper Reports: Methods and Outcomes},
journal = {Datenbank-Spektrum},
volume = {20},
number = {2},
year = {2020},
,
pages = { 143-153 } ,
doi = { 10.1007/s13222-020-00344-w }
}
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.1007/s13222-020-00344-w
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
ISSN: 1610-1995
xmlui.MetaDataDisplay.field.date: 2020
Content Type: Text/Journal Article