GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Fachbereiche
  • Datenbanken und Informationssysteme (DBIS)
  • Datenbank Spektrum
  • Datenbank Spektrum 20(2) - Juli 2020
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Fachbereiche
  • Datenbanken und Informationssysteme (DBIS)
  • Datenbank Spektrum
  • Datenbank Spektrum 20(2) - Juli 2020
  • View Item

Towards Understanding and Arguing with Classifiers: Recent Progress

Author:
Shao, Xiaoting [DBLP] ;
Rienstra, Tjitze [DBLP] ;
Thimm, Matthias [DBLP] ;
Kersting, Kristian [DBLP]
Abstract
Machine learning and argumentation can potentially greatly benefit from each other. Combining deep classifiers with knowledge expressed in the form of rules and constraints allows one to leverage different forms of abstractions within argumentation mining. Argumentation for machine learning can yield argumentation-based learning methods where the machine and the user argue about the learned model with the common goal of providing results of maximum utility to the user. Unfortunately, both directions are currently rather challenging. For instance, combining deep neural models with logic typically only yields deterministic results, while combining probabilistic models with logic often results in intractable inference. Therefore, we review a novel deep but tractable model for conditional probability distributions that can harness the expressive power of universal function approximators such as neural networks while still maintaining a wide range of tractable inference routines. While this new model has shown appealing performance in classification tasks, humans cannot easily understand the reasons for its decision. Therefore, we also review our recent efforts on how to “argue” with deep models. On synthetic and real data we illustrate how “arguing” with a deep model about its explanations can actually help to revise the model, if it is right for the wrong reasons.
  • Citation
  • BibTeX
Shao, X., Rienstra, T., Thimm, M. & Kersting, K., (2020). Towards Understanding and Arguing with Classifiers: Recent Progress.   Datenbank-Spektrum: Vol. 20, No. 2. Springer. (S. 171-180). DOI: 10.1007/s13222-020-00351-x
@article{mci/Shao2020,
author = {Shao, Xiaoting AND Rienstra, Tjitze AND Thimm, Matthias AND Kersting, Kristian},
title = {Towards Understanding and Arguing with Classifiers: Recent Progress},
journal = {Datenbank-Spektrum},
volume = {20},
number = {2},
year = {2020},
,
pages = { 171-180 } ,
doi = { 10.1007/s13222-020-00351-x }
}

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.1007/s13222-020-00351-x

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.1007/s13222-020-00351-x
ISSN: 1610-1995
xmlui.MetaDataDisplay.field.date: 2020
Content Type: Text/Journal Article

Keywords

  • Argumentation-based ML
  • Deep Density Estimation
  • Explainable AI
  • Influence Function
  • Interactive ML
  • Probabilistic Circuits
Collections
  • Datenbank Spektrum 20(2) - Juli 2020 [13]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.