GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Fachbereiche
  • Wirtschaftsinformatik (WI)
  • Business & Information Systems Engineering - The International Journal of WIRTSCHAFTSINFORMATIK
  • BISE 63(3) - June 2021
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Fachbereiche
  • Wirtschaftsinformatik (WI)
  • Business & Information Systems Engineering - The International Journal of WIRTSCHAFTSINFORMATIK
  • BISE 63(3) - June 2021
  • View Item

Machine Learning in Business Process Monitoring: A Comparison of Deep Learning and Classical Approaches Used for Outcome Prediction

Author:
Kratsch, Wolfgang [DBLP] ;
Manderscheid, Jonas [DBLP] ;
Röglinger, Maximilian [DBLP] ;
Seyfried, Johannes [DBLP]
Abstract
Predictive process monitoring aims at forecasting the behavior, performance, and outcomes of business processes at runtime. It helps identify problems before they occur and re-allocate resources before they are wasted. Although deep learning (DL) has yielded breakthroughs, most existing approaches build on classical machine learning (ML) techniques, particularly when it comes to outcome-oriented predictive process monitoring. This circumstance reflects a lack of understanding about which event log properties facilitate the use of DL techniques. To address this gap, the authors compared the performance of DL (i.e., simple feedforward deep neural networks and long short term memory networks) and ML techniques (i.e., random forests and support vector machines) based on five publicly available event logs. It could be observed that DL generally outperforms classical ML techniques. Moreover, three specific propositions could be inferred from further observations: First, the outperformance of DL techniques is particularly strong for logs with a high variant-to-instance ratio (i.e., many non-standard cases). Second, DL techniques perform more stably in case of imbalanced target variables, especially for logs with a high event-to-activity ratio (i.e., many loops in the control flow). Third, logs with a high activity-to-instance payload ratio (i.e., input data is predominantly generated at runtime) call for the application of long short term memory networks. Due to the purposive sampling of event logs and techniques, these findings also hold for logs outside this study.
  • Citation
  • BibTeX
Kratsch, W., Manderscheid, J., Röglinger, M. & Seyfried, J., (2021). Machine Learning in Business Process Monitoring: A Comparison of Deep Learning and Classical Approaches Used for Outcome Prediction.   Business & Information Systems Engineering: Vol. 63, No. 3. Springer. (S. 261-276). DOI: 10.1007/s12599-020-00645-0
@article{mci/Kratsch2021,
author = {Kratsch, Wolfgang AND Manderscheid, Jonas AND Röglinger, Maximilian AND Seyfried, Johannes},
title = {Machine Learning in Business Process Monitoring: A Comparison of Deep Learning and Classical Approaches Used for Outcome Prediction},
journal = {Business & Information Systems Engineering},
volume = {63},
number = {3},
year = {2021},
,
pages = { 261-276 } ,
doi = { 10.1007/s12599-020-00645-0 }
}

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.1007/s12599-020-00645-0

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.1007/s12599-020-00645-0
ISSN: 1867-0202
xmlui.MetaDataDisplay.field.date: 2021
Content Type: Text/Journal Article

Keywords

  • Business process management
  • Deep learning
  • Machine learning
  • Outcome prediction
  • Predictive process monitoring
Collections
  • BISE 63(3) - June 2021 [8]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.