GI LogoGI Logo
  • Anmelden
Digitale Bibliothek
    • Gesamter Bestand

      • Bereiche & Sammlungen
      • Titel
      • Autor
      • Erscheinungsdatum
      • Schlagwort
    • Diese Sammlung

      • Titel
      • Autor
      • Erscheinungsdatum
      • Schlagwort
Digital Bibliothek der Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • Deutsch 
    • English
    • Deutsch
Dokumentanzeige 
  •   Startseite
  • Fachbereiche
  • Mensch-Computer-Interaktion (MCI)
  • Mensch und Computer
  • Mensch und Computer 2021
  • Workshopband MuC 2021
  • Dokumentanzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   Startseite
  • Fachbereiche
  • Mensch-Computer-Interaktion (MCI)
  • Mensch und Computer
  • Mensch und Computer 2021
  • Workshopband MuC 2021
  • Dokumentanzeige

How can Small Data Sets be Clustered?

Autor(en):
Weigand, Anna Christina [DBLP] ;
Lange, Daniel [DBLP] ;
Rauschenberger, Maria [DBLP]
Zusammenfassung
In many areas, only small data sets are available and big data does not play a significant role, e.g., in Human-Centered Design research. In the context of machine learning analysis, results of small data sets can be biased due to single variables or missing values. Nevertheless, reliable and interpretable results are essential for determining further actions, such as, e.g., treatments in a health-related use case. In this paper, we explore machine learning clustering algorithms on the basis of a small, health-related (variance) data set about early dyslexia screening. Therefore, we selected three different clustering algorithms from different clustering methods: K-Means, HAC and DBSCAN. In our case, K-Means and HAC showed promising results, while DBSCAN did not deliver distinct results. Based on our experiences, we provide first proposals on how to handle small data set clustering and describe situations in which using Human- Centered Design methods can increase interpretability of machine learning clustering results. Our work represents a starting point for discussing the topic of clustering small data sets.
  • Vollständige Referenz
  • BibTeX
Weigand, A. C., Lange, D. & Rauschenberger, M., (2021). How can Small Data Sets be Clustered?. In: Wienrich, C., Wintersberger, P. & Weyers, B. (Hrsg.), Mensch und Computer 2021 - Workshopband. Bonn: Gesellschaft für Informatik e.V.. DOI: 10.18420/muc2021-mci-ws02-284
@inproceedings{mci/Weigand2021,
author = {Weigand, Anna Christina AND Lange, Daniel AND Rauschenberger, Maria},
title = {How can Small Data Sets be Clustered?},
booktitle = {Mensch und Computer 2021 - Workshopband},
year = {2021},
editor = {Wienrich, Carolin AND Wintersberger, Philipp AND Weyers, Benjamin} ,
doi = { 10.18420/muc2021-mci-ws02-284 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
Contribution_284__a.pdf553.3Kb PDF Öffnen

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/muc2021-mci-ws02-284

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Feedback abschicken

Mehr Information

DOI: 10.18420/muc2021-mci-ws02-284
Datum: 2021
Sprache: en (en)
Typ: Text/Conference Poster

Keywords

  • machine learning
  • human-centered design
  • interactive systems
  • health
  • small data
  • imbalanced data
  • variances
  • interpretable results
  • guidelines
  • data set
  • clustering
Sammlungen
  • Workshopband MuC 2021 [65]

Zur Langanzeige


Über uns | FAQ | Hilfe | Impressum | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


Über uns | FAQ | Hilfe | Impressum | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.