Logo des Repositoriums
 
Konferenzbeitrag

Identical Twins as a Facial Similarity Benchmark for Human Facial Recognition

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2021

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

The problem of distinguishing identical twins and non-twin look-alikes in automated facial recognition (FR) applications has become increasingly important with the widespread adoption of facial biometrics. This work presents an application of one of the largest twin datasets compiled to date to address two FR challenges: 1) determining a baseline measure of facial similarity between identical twins and 2) applying this similarity measure to determine the impact of doppelgangers, or look-alikes, on FR performance for large face datasets. The facial similarity measure is determined via a deep Siamese convolutional neural network. The proposed network provides a quantitative similarity score for any two given faces and has been applied to large-scale face datasets to identify similar face pairs.

Beschreibung

McCauley, John; Soleymani, Sobhan; Williams, Brady; Nasrabadi, Nasser; Dawson, Jeremy (2021): Identical Twins as a Facial Similarity Benchmark for Human Facial Recognition. BIOSIG 2021 - Proceedings of the 20th International Conference of the Biometrics Special Interest Group. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-709-8. pp. 1-10. Regular Research Papers. International Digital Conference. 15.-17. September 2021

Zitierform

DOI

Tags