Identical Twins as a Facial Similarity Benchmark for Human Facial Recognition
Abstract
The problem of distinguishing identical twins and non-twin look-alikes in automated facial recognition (FR) applications has become increasingly important with the widespread adoption of facial biometrics. This work presents an application of one of the largest twin datasets compiled to date to address two FR challenges: 1) determining a baseline measure of facial similarity between identical twins and 2) applying this similarity measure to determine the impact of doppelgangers, or look-alikes, on FR performance for large face datasets. The facial similarity measure is determined via a deep Siamese convolutional neural network. The proposed network provides a quantitative similarity score for any two given faces and has been applied to large-scale face datasets to identify similar face pairs.
- Citation
- BibTeX
McCauley, J., Soleymani, S., Williams, B., Nasrabadi, N. & Dawson, J.,
(2021).
Identical Twins as a Facial Similarity Benchmark for Human Facial Recognition.
In:
Brömme, A., Busch, C., Damer, N., Dantcheva, A., Gomez-Barrero, M., Raja, K., Rathgeb, C., Sequeira, A. & Uhl, A.
(Hrsg.),
BIOSIG 2021 - Proceedings of the 20th International Conference of the Biometrics Special Interest Group.
Bonn:
Gesellschaft für Informatik e.V..
(S. 1-10).
@inproceedings{mci/McCauley2021,
author = {McCauley, John AND Soleymani, Sobhan AND Williams, Brady AND Nasrabadi, Nasser AND Dawson, Jeremy},
title = {Identical Twins as a Facial Similarity Benchmark for Human Facial Recognition},
booktitle = {BIOSIG 2021 - Proceedings of the 20th International Conference of the Biometrics Special Interest Group},
year = {2021},
editor = {Brömme, Arslan AND Busch, Christoph AND Damer, Naser AND Dantcheva, Antitza AND Gomez-Barrero, Marta AND Raja, Kiran AND Rathgeb, Christian AND Sequeira, Ana AND Uhl, Andreas} ,
pages = { 1-10 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
author = {McCauley, John AND Soleymani, Sobhan AND Williams, Brady AND Nasrabadi, Nasser AND Dawson, Jeremy},
title = {Identical Twins as a Facial Similarity Benchmark for Human Facial Recognition},
booktitle = {BIOSIG 2021 - Proceedings of the 20th International Conference of the Biometrics Special Interest Group},
year = {2021},
editor = {Brömme, Arslan AND Busch, Christoph AND Damer, Naser AND Dantcheva, Antitza AND Gomez-Barrero, Marta AND Raja, Kiran AND Rathgeb, Christian AND Sequeira, Ana AND Uhl, Andreas} ,
pages = { 1-10 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
biosig2021_proceedings_01.pdf | 475.3Kb | View/ |
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
ISBN: 978-3-88579-709-8
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2021
Language:
(en)

Content Type: Text/Conference Paper