GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P315 - BIOSIG 2021 - Proceedings of the 20th International Conference of the Biometrics Special Interest Group
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P315 - BIOSIG 2021 - Proceedings of the 20th International Conference of the Biometrics Special Interest Group
  • View Item

Transferability Analysis of an Adversarial Attack on Gender Classification to Face Recognition

Author:
Rezgui, Zohra [DBLP] ;
Bassit, Amina [DBLP]
Abstract
Modern biometric systems establish their decision based on the outcome of machine learning (ML) classifiers trained to make accurate predictions. Such classifiers are vulnerable to diverse adversarial attacks, altering the classifiers' predictions by adding a crafted perturbation. According to ML literature, those attacks are transferable among models that perform the same task. However, models performing different tasks, but sharing the same input space and the same model architecture, were never included in transferability scenarios. In this paper, we analyze this phenomenon for the special case of VGG16-based biometric classifiers. Concretely, we study the effect of the white-box FGSM attack, on a gender classifier and compare several defense methods as countermeasure. Then, in a black-box manner, we attack a pre-trained face recognition classifier using adversarial images generated by the FGSM. Our experiments show that this attack is transferable from a gender classifier to a face recognition classifier where both were independently trained.
  • Citation
  • BibTeX
Rezgui, Z. & Bassit, A., (2021). Transferability Analysis of an Adversarial Attack on Gender Classification to Face Recognition. In: Brömme, A., Busch, C., Damer, N., Dantcheva, A., Gomez-Barrero, M., Raja, K., Rathgeb, C., Sequeira, A. & Uhl, A. (Hrsg.), BIOSIG 2021 - Proceedings of the 20th International Conference of the Biometrics Special Interest Group. Bonn: Gesellschaft für Informatik e.V.. (S. 125-136).
@inproceedings{mci/Rezgui2021,
author = {Rezgui, Zohra AND Bassit, Amina},
title = {Transferability Analysis of an Adversarial Attack on Gender Classification to Face Recognition},
booktitle = {BIOSIG 2021 - Proceedings of the 20th International Conference of the Biometrics Special Interest Group},
year = {2021},
editor = {Brömme, Arslan AND Busch, Christoph AND Damer, Naser AND Dantcheva, Antitza AND Gomez-Barrero, Marta AND Raja, Kiran AND Rathgeb, Christian AND Sequeira, Ana AND Uhl, Andreas} ,
pages = { 125-136 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
biosig2021_proceedings_13.pdf353.0Kb PDF View/Open

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

ISBN: 978-3-88579-709-8
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2021
Language: en (en)
Content Type: Text/Conference Paper

Keywords

  • Transferability
  • adversarial attacks
  • gender classification
  • face recognition
Collections
  • P315 - BIOSIG 2021 - Proceedings of the 20th International Conference of the Biometrics Special Interest Group [33]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.