Gait Authentication based on Spiking Neural Networks
Abstract
In this paper we address gait authentication using a novel approach based on spiking neural networks (SNNs). This technology has proven advantages regarding energy consumption and it is a perfect match with some proposed neuromorphic hardware chips, which can lead to a broader adoption of user device applications of artificial intelligence technologies. One of the challenges when using this technology is the training of the network itself, since it is not straightforward to apply well-known error backpropagation, massively used in traditional artificial neural networks (ANNs). In this paper we propose a new derivation of error backpropagation for the spiking neural networks that integrates lateral inhibition and provides competitive results when compared to state of the art ANNs in the context of IMU-based gait authentication.
- Citation
- BibTeX
Rúa, E. A., van Hamme, T., Preuveneers, D. & Joosen, W.,
(2021).
Gait Authentication based on Spiking Neural Networks.
In:
Brömme, A., Busch, C., Damer, N., Dantcheva, A., Gomez-Barrero, M., Raja, K., Rathgeb, C., Sequeira, A. & Uhl, A.
(Hrsg.),
BIOSIG 2021 - Proceedings of the 20th International Conference of the Biometrics Special Interest Group.
Bonn:
Gesellschaft für Informatik e.V..
(S. 51-60).
@inproceedings{mci/Rúa2021,
author = {Rúa, Enrique Argones AND van Hamme, Tim AND Preuveneers, Davy AND Joosen, Wouter},
title = {Gait Authentication based on Spiking Neural Networks},
booktitle = {BIOSIG 2021 - Proceedings of the 20th International Conference of the Biometrics Special Interest Group},
year = {2021},
editor = {Brömme, Arslan AND Busch, Christoph AND Damer, Naser AND Dantcheva, Antitza AND Gomez-Barrero, Marta AND Raja, Kiran AND Rathgeb, Christian AND Sequeira, Ana AND Uhl, Andreas} ,
pages = { 51-60 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
author = {Rúa, Enrique Argones AND van Hamme, Tim AND Preuveneers, Davy AND Joosen, Wouter},
title = {Gait Authentication based on Spiking Neural Networks},
booktitle = {BIOSIG 2021 - Proceedings of the 20th International Conference of the Biometrics Special Interest Group},
year = {2021},
editor = {Brömme, Arslan AND Busch, Christoph AND Damer, Naser AND Dantcheva, Antitza AND Gomez-Barrero, Marta AND Raja, Kiran AND Rathgeb, Christian AND Sequeira, Ana AND Uhl, Andreas} ,
pages = { 51-60 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
biosig2021_proceedings_06.pdf | 149.7Kb | View/ |
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
ISBN: 978-3-88579-709-8
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2021
Language:
(en)

Content Type: Text/Conference Paper