GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • INFORMATIK - Jahrestagung der Gesellschaft für Informatik e.V.
  • P314 - INFORMATIK 2021 - Computer Science & Sustainability
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • INFORMATIK - Jahrestagung der Gesellschaft für Informatik e.V.
  • P314 - INFORMATIK 2021 - Computer Science & Sustainability
  • View Item

Improving a Rule-based Fraud Detection System with Classification Based on Association Rule Mining

Author:
Baumann, Michaela [DBLP]
Abstract
Improving a Rule-based Fraud Detection System with Classification Based on Association Rule MiningThe detection of fraudulent insurance claims is a great challenge for insurance companies. Although the detection possibilities are getting better and better, fraudsters do not hesitate also using newer and more sophisticated methods. Apart from establishing new fraud detection systems, also the existing systems need to be updated and improved as best as possible. One common detection system is a rule-based expert system that checks predefined rules and gives alerts when certain conditions are met. Usually, the rules are treated separately and correlations within the rules are considered insufficiently. The work at hand describes how the classification based on association rule mining is used for improving such rule-based systems by bringing in relations between pairs of rules. The rule weights are determined through a genetic optimizer.
  • Citation
  • BibTeX
Baumann, M., (2021). Improving a Rule-based Fraud Detection System with Classification Based on Association Rule Mining. In: , . (Hrsg.), INFORMATIK 2021. Gesellschaft für Informatik, Bonn. (S. 1121-1134). DOI: 10.18420/informatik2021-091
@inproceedings{mci/Baumann2021,
author = {Baumann, Michaela},
title = {Improving a Rule-based Fraud Detection System with Classification Based on Association Rule Mining},
booktitle = {INFORMATIK 2021},
year = {2021},
editor = {} ,
pages = { 1121-1134 } ,
doi = { 10.18420/informatik2021-091 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
DateienGroesseFormatAnzeige
L1-3.pdf249.7Kb PDF View/Open

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/informatik2021-091

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.18420/informatik2021-091
ISBN: 978-3-88579-708-1
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2021
Language: en (en)

Keywords

  • Insurance fraud detection
  • Association rule mining
  • Expert system
  • Genetic optimizer
  • Classification
Collections
  • P314 - INFORMATIK 2021 - Computer Science & Sustainability [168]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.