Show simple item record

dc.contributor.authorPetrik, Dimitri
dc.contributor.authorPantow, Katharina
dc.contributor.authorZschech, Patrick
dc.contributor.authorHerzwurm, Georg
dc.contributor.editorHelferich, Andreas
dc.contributor.editorHenzel, Robert
dc.contributor.editorHerzwurm, Georg
dc.contributor.editorMikusz, Martin
dc.date.accessioned2021-12-15T13:15:41Z
dc.date.available2021-12-15T13:15:41Z
dc.date.issued2021
dc.identifier.isbn978-3-88579-712-8
dc.identifier.issn1617-5468
dc.identifier.urihttp://dl.gi.de/handle/20.500.12116/37792
dc.description.abstractThis paper has been accepted and published as a Full Research Paper at the Wirtschaftsinformatik 2021 Conference in March 2021. The market for the Industrial Internet of Things (IIoT) platforms remains highly dynamic and is rapidly evolving regarding the growth of the platform-based ecosystems. However, digital platforms, used in the industrial business-to-business setting, differ significantly from the established platforms in the business-to-consumer domains and remain little researched. In this study, we apply a data-driven approach and conduct bottom-up and top-down content analysis, exploring social media data on the current state of IIoT platforms. For a top-down analysis, we draw on the theoretical concept of platform boundary resources. Specifically, we apply descriptive analytics and topic modeling on the Twitter data regarding the market-ready IIoT platforms Adamos, Cumulocity, Watson IoT, MindSphere, Leonardo, and ThingWorx, thus conducting an exploratory multiple case study. Our findings generate descriptive insights on the currently discussed topics in the area of IIoT platforms, contributing to the knowledge of the current state of digital platforms used in IIoT, highlighting the different focuses in ecosystem communication.en
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftware Management 2021
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-318
dc.subjectIndustrial IoT
dc.subjectIoT Platform
dc.subjectPlatform Strategy
dc.subjectIoT Platform Management
dc.subjectBoundary Resources
dc.subjectTwitter Analytics
dc.titleTweeting in IIoT Ecosystems – Empirical Insights from Social Media Analytics about IIoT Platforms   en
dc.typeText/Conference Paper
dc.pubPlaceBonn
mci.reference.pages21-38
mci.conference.sessiontitleHauptprogramm
mci.conference.locationStuttgart, Germany
mci.conference.date11.-12. November 2021
dc.identifier.doi10.18420/swm2021-003


Files in this item

Thumbnail

Show simple item record