Recognising Guitar Effects - Which Acoustic Features Really Matter?
Zusammenfassung
The recognition of audio effects employed in recordings of electric guitar or bass has a wide range of applications in music information retrieval. It is meaningful in holistic automatic music transcription and annotation approaches for, e. g., music education, intelligent music search, or musicology. In this contribution, we investigate the relevance of a large variety of state-of-the-art acoustic features for the task of automatic guitar effect recognition. The usage of functionals, i. e., statistics such as moments and percentiles, is hereby compared to the bag-of-audio-words approach to obtain an acoustic representation of a recording on instance level. Our results are based on a database of more than 50 000 monophonic and polyphonic samples of electric guitars and bass guitars, processed with 10 different digital audio effects.
- Vollständige Referenz
- BibTeX
Schmitt, M. & Schuller, B.,
(2017).
Recognising Guitar Effects - Which Acoustic Features Really Matter?.
In:
Eibl, M. & Gaedke, M.
(Hrsg.),
INFORMATIK 2017.
Gesellschaft für Informatik, Bonn.
(S. 177-190).
DOI: 10.18420/in2017_12
@inproceedings{mci/Schmitt2017,
author = {Schmitt, Maximilian AND Schuller, Björn},
title = {Recognising Guitar Effects - Which Acoustic Features Really Matter?},
booktitle = {INFORMATIK 2017},
year = {2017},
editor = {Eibl, Maximilian AND Gaedke, Martin} ,
pages = { 177-190 } ,
doi = { 10.18420/in2017_12 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
author = {Schmitt, Maximilian AND Schuller, Björn},
title = {Recognising Guitar Effects - Which Acoustic Features Really Matter?},
booktitle = {INFORMATIK 2017},
year = {2017},
editor = {Eibl, Maximilian AND Gaedke, Martin} ,
pages = { 177-190 } ,
doi = { 10.18420/in2017_12 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/in2017_12
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Feedback abschicken
Mehr Information
DOI: 10.18420/in2017_12
ISBN: 978-3-88579-669-5
ISSN: 1617-5468
Datum: 2017
Sprache:
(en)

Sammlungen
- P275 - INFORMATIK 2017 [266]