Personalised Training: Integrating Recommender Systems in XR Training Platforms
Autor(en):
Zusammenfassung
The fast-paced growth of Extended Reality (XR) technologies in complex environments, such as training scenarios, has highlighted the need to implement Artificial Intelligence (AI) modules in the simulations to support trainers and trainees in these unfamiliar contexts. Among the possible AI solutions, recommender systems (RS) could be used to improve the users’ interactions and experience in immersive training environments. This work describes the integration of a RS in the framework of an XR training platform and how the design of interfaces to present recommendations can maximize acceptance of the suggestions in hybrid human-intelligent systems. By allowing trainers to adapt training scenarios during the execution of the exercise, successful and personalized training goals can be achieved.
- Vollständige Referenz
- BibTeX
Pretolesi, D.,
(2022).
Personalised Training: Integrating Recommender Systems in XR Training Platforms.
In:
Marky, K., Grünefeld, U. & Kosch, T.
(Hrsg.),
Mensch und Computer 2022 - Workshopband.
Bonn:
Gesellschaft für Informatik e.V..
DOI: 10.18420/muc2022-mci-ws12-294
@inproceedings{mci/Pretolesi2022,
author = {Pretolesi, Daniele},
title = {Personalised Training: Integrating Recommender Systems in XR Training Platforms},
booktitle = {Mensch und Computer 2022 - Workshopband},
year = {2022},
editor = {Marky, Karola AND Grünefeld, Uwe AND Kosch, Thomas} ,
doi = { 10.18420/muc2022-mci-ws12-294 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
author = {Pretolesi, Daniele},
title = {Personalised Training: Integrating Recommender Systems in XR Training Platforms},
booktitle = {Mensch und Computer 2022 - Workshopband},
year = {2022},
editor = {Marky, Karola AND Grünefeld, Uwe AND Kosch, Thomas} ,
doi = { 10.18420/muc2022-mci-ws12-294 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
WS-12-5_Personalised Training Integrating Recommender Systems.pdf | 397.1Kb | Öffnen |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/muc2022-mci-ws12-294
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Feedback abschicken
Mehr Information
Datum: 2022
Sprache:
(en)

Typ: Text/Conference Poster