GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Fachbereiche
  • Mensch-Computer-Interaktion (MCI)
  • Mensch und Computer
  • Mensch und Computer 2022
  • Tagungsband MuC 2022
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Fachbereiche
  • Mensch-Computer-Interaktion (MCI)
  • Mensch und Computer
  • Mensch und Computer 2022
  • Tagungsband MuC 2022
  • View Item

Sign H3re: Symbol and X-Mark Writer Identification Using Audio and Motion Data from a Digital Pen

Author:
Schrapel, Maximilian [DBLP] ;
Grannemann, Dennis [DBLP] ;
Rohs, Michael [DBLP]
Abstract
Although in many cases contracts can be made or ended digitally, laws require handwritten signatures in certain cases. Forgeries are a major challenge with digital contracts, as their validity is not always immediately apparent without forensic methods. Illiteracy or disabilities may result in a person being unable to write their full name. In this case x-mark signatures are used, which require a witness for validity. In cases of suspected fraud, the relationship of the witnesses must be questioned, which involves a great amount of effort. In this paper we use audio and motion data from a digital pen to identify users via handwritten symbols. We evaluated the performance our approach for 19 symbols in a study with 30 participants. We found that x-marks offer fewer individual features than other symbols like arrows or circles. By training on three samples and averaging three predictions we reach a mean F1-score of F 1 = 0.87, using statistical and spectral features fed into SVMs
  • Citation
  • BibTeX
Schrapel, M., Grannemann, D. & Rohs, M., (2022). Sign H3re: Symbol and X-Mark Writer Identification Using Audio and Motion Data from a Digital Pen. In: Mühlhäuser, M., Reuter, C., Pfleging, B., Kosch, T., Matviienko, A., Gerling, K. S., Heuten, W., Döring, T., Müller, F. & Schmitz, M. (Hrsg.), Mensch und Computer 2022 - Tagungsband. New York: ACM. (S. 209-218). DOI: 10.1145/3543758.3543764
@inproceedings{mci/Schrapel2022,
author = {Schrapel, Maximilian AND Grannemann, Dennis AND Rohs, Michael},
title = {Sign H3re: Symbol and X-Mark Writer Identification Using Audio and Motion Data from a Digital Pen},
booktitle = {Mensch und Computer 2022 - Tagungsband},
year = {2022},
editor = {Mühlhäuser, Max AND Reuter, Christian AND Pfleging, Bastian AND Kosch, Thomas AND Matviienko, Andrii AND Gerling, Kathrin|Mayer, Sven AND Heuten, Wilko AND Döring, Tanja AND Müller, Florian AND Schmitz, Martin} ,
pages = { 209-218 } ,
doi = { 10.1145/3543758.3543764 },
publisher = {ACM},
address = {New York}
}

Weitere Information zum Dokument oder der Volltext des Dokuments sind auf einem externen Server verfuegbar: https://dl.acm.org/doi/10.1145/3543758.3543764

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.1145/3543758.3543764
xmlui.MetaDataDisplay.field.date: 2022
Language: en (en)
Content Type: Text/Conference Paper

Keywords

  • Digital Pens
  • Signature Authentication
  • Signing Documents
  • Pattern Recognition
  • Handwriting Recognition
  • Motor Impairments
  • Accessibility
Collections
  • Tagungsband MuC 2022 [90]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.