Responding to the Forecast
Zusammenfassung
Machines become increasingly complex. At the same time, more and more sensors are installed and information is gathered in order to enable a close to real-time prediction of a machine's state. Compa-nies try to implement Predictive Maintenance strategies to avoid machine downtimes on a large scale. For this purpose, artificial neural networks are applied more and more often. However, the classifica-tion of machine states with artificial neural networks is still not accurate enough. This is partially due to a lack of standards in data processing and in the harmonization of data from different sensor types. We aim to contribute to close these research gaps by developing a standard PM concept for machine and plant manufactures.
- Vollständige Referenz
- BibTeX
Varwig, A., Kammler, F. & Thomas, O.,
(2017).
Responding to the Forecast.
In:
Eibl, M. & Gaedke, M.
(Hrsg.),
INFORMATIK 2017.
Gesellschaft für Informatik, Bonn.
(S. 1793-1805).
DOI: 10.18420/in2017_178
@inproceedings{mci/Varwig2017,
author = {Varwig, Andreas AND Kammler, Friedemann AND Thomas, Oliver},
title = {Responding to the Forecast},
booktitle = {INFORMATIK 2017},
year = {2017},
editor = {Eibl, Maximilian AND Gaedke, Martin} ,
pages = { 1793-1805 } ,
doi = { 10.18420/in2017_178 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
author = {Varwig, Andreas AND Kammler, Friedemann AND Thomas, Oliver},
title = {Responding to the Forecast},
booktitle = {INFORMATIK 2017},
year = {2017},
editor = {Eibl, Maximilian AND Gaedke, Martin} ,
pages = { 1793-1805 } ,
doi = { 10.18420/in2017_178 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/in2017_178
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Feedback abschicken
Mehr Information
DOI: 10.18420/in2017_178
ISBN: 978-3-88579-669-5
ISSN: 1617-5468
Datum: 2017
Sprache:
(en)

Keywords
Sammlungen
- P275 - INFORMATIK 2017 [266]