Logo des Repositoriums
 
Textdokument

Comparison Spatio-Temporal Prediction Approaches of Point-Referenced Environmental Data

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2022

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

Due to climate change and the effect on human health, there is an urgency to observe and understand the environment. To achieve this goal, knowledge about the development of environmental parameters over time and space is necessary. The analysis of the underlying data can therefore be done with spatial, temporal or even spatio-temporal methods. These methods can also be combined: First spatial,then temporal analyses and vice versa. In this work, we compare the effect of the decision whether to first analyze the data spatially, temporally or both simultaneously. We chose temperature data in Baden-Württemberg, yearly and monthly aggregated, for our comparison.

Beschreibung

Dorffer,Nina; Bruns,Julian; Abecker,Andreas; Lossow,Stefan (2022): Comparison Spatio-Temporal Prediction Approaches of Point-Referenced Environmental Data. INFORMATIK 2022. DOI: 10.18420/inf2022_129. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-720-3. pp. 1505-1516. Künstliche Intelligenz in der Umweltinformatik (KIU-2022). Hamburg. 26.-30. September 2022

Zitierform

Tags