GI LogoGI Logo
  • Anmelden
Digitale Bibliothek
    • Gesamter Bestand

      • Bereiche & Sammlungen
      • Titel
      • Autor
      • Erscheinungsdatum
      • Schlagwort
    • Diese Sammlung

      • Titel
      • Autor
      • Erscheinungsdatum
      • Schlagwort
Digital Bibliothek der Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • Deutsch 
    • English
    • Deutsch
Dokumentanzeige 
  •   Startseite
  • Lecture Notes in Informatics
  • Proceedings
  • INFORMATIK - Jahrestagung der Gesellschaft für Informatik e.V.
  • P275 - INFORMATIK 2017
  • Dokumentanzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   Startseite
  • Lecture Notes in Informatics
  • Proceedings
  • INFORMATIK - Jahrestagung der Gesellschaft für Informatik e.V.
  • P275 - INFORMATIK 2017
  • Dokumentanzeige

Training a deep policy gradient-based neural network with asynchronous learners on a simulated robotic problem

Autor(en):
Lötzsch, Winfried [DBLP] ;
Vitay, Julien [DBLP] ;
Hamker, Fred [DBLP]
Zusammenfassung
Recent advances in deep reinforcement learning methods have attracted a lot of attention, because of their ability to use raw signals such as video streams as inputs, instead of pre-processed state variables. However, the most popular methods (value-based methods, e.g. deep Q-networks) focus on discrete action spaces (e.g. the left/right buttons), while realistic robotic applications usually require a continuous action space (for example the joint space). Policy gradient methods, such as stochastic policy gradient or deep deterministic policy gradient, propose to overcome this problem by allowing continuous action spaces. Despite their promises, they suffer from long training times as they need huge numbers of interactions to converge. In this paper, we investigate in how far a recent asynchronously parallel actor-critic approach, initially proposed to speed up discrete RL algorithms, could be used for the continuous control of robotic arms. We demonstrate the capabilities of this end-to-end learning algorithm on a simulated 2 degrees-of-freedom robotic arm and discuss its applications to more realistic scenarios.
  • Vollständige Referenz
  • BibTeX
Lötzsch, W., Vitay, J. & Hamker, F., (2017). Training a deep policy gradient-based neural network with asynchronous learners on a simulated robotic problem. In: Eibl, M. & Gaedke, M. (Hrsg.), INFORMATIK 2017. Gesellschaft für Informatik, Bonn. (S. 2143-2154). DOI: 10.18420/in2017_214
@inproceedings{mci/Lötzsch2017,
author = {Lötzsch, Winfried AND Vitay, Julien AND Hamker, Fred},
title = {Training a deep policy gradient-based neural network with asynchronous learners on a simulated robotic problem},
booktitle = {INFORMATIK 2017},
year = {2017},
editor = {Eibl, Maximilian AND Gaedke, Martin} ,
pages = { 2143-2154 } ,
doi = { 10.18420/in2017_214 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
DateienGroesseFormatAnzeige
B29-1.pdf541.6Kb PDF Öffnen

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/in2017_214

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Feedback abschicken

Mehr Information

DOI: 10.18420/in2017_214
ISBN: 978-3-88579-669-5
ISSN: 1617-5468
Datum: 2017
Sprache: en (en)

Keywords

  • deep learning
  • reinforcement learning
  • robotics
  • policy gradient methods
  • actor critic
  • asynchronous learning
  • continuous action space
Sammlungen
  • P275 - INFORMATIK 2017 [266]

Zur Langanzeige


Über uns | FAQ | Hilfe | Impressum | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


Über uns | FAQ | Hilfe | Impressum | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.