Reranking-based Recommender System with Deep Learning
Author:
Abstract
An enormous volume of scientific content is published every year. The amount exceeds by far what a scientist can read in her entire life. In order to address this problem, we have developed and empirically evaluated a recommender system for scientific papers based on Twitter postings. In this paper, we improve on the previous work by a reranking approach using Deep Learning. Thus, after a list of top-k recommendations is computed, we rerank the results by employing a neural network to improve the results of the existing recommender system. We present the design of the deep reranking approach and a preliminary evaluation. Our results show that in most cases, the recommendations can be improved using our Deep Learning reranking approach.
- Citation
- BibTeX
Saleh, A., Mai, F., Nishioka, C. & Scherp, A.,
(2017).
Reranking-based Recommender System with Deep Learning.
In:
Eibl, M. & Gaedke, M.
(Hrsg.),
INFORMATIK 2017.
Gesellschaft für Informatik, Bonn.
(S. 2169-2175).
DOI: 10.18420/in2017_216
@inproceedings{mci/Saleh2017,
author = {Saleh, Ahmed AND Mai, Florian AND Nishioka, Chifumi AND Scherp, Ansgar},
title = {Reranking-based Recommender System with Deep Learning},
booktitle = {INFORMATIK 2017},
year = {2017},
editor = {Eibl, Maximilian AND Gaedke, Martin} ,
pages = { 2169-2175 } ,
doi = { 10.18420/in2017_216 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
author = {Saleh, Ahmed AND Mai, Florian AND Nishioka, Chifumi AND Scherp, Ansgar},
title = {Reranking-based Recommender System with Deep Learning},
booktitle = {INFORMATIK 2017},
year = {2017},
editor = {Eibl, Maximilian AND Gaedke, Martin} ,
pages = { 2169-2175 } ,
doi = { 10.18420/in2017_216 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/in2017_216
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
DOI: 10.18420/in2017_216
ISBN: 978-3-88579-669-5
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2017
Language:
(en)

Collections
- P275 - INFORMATIK 2017 [266]