GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • Software Engineering
  • P332 - Software Engineering 2023
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • Software Engineering
  • P332 - Software Engineering 2023
  • View Item

Variable Misuse Detection: Software Developers versus Neural Bug Detectors

Author:
Richter, Cedric [DBLP] ;
Haltermann, Jan [DBLP] ;
Jakobs, Marie-Christine [DBLP] ;
Pauck, Felix [DBLP] ;
Schott, Stefan [DBLP] ;
Wehrheim, Heike [DBLP]
Abstract
Finding and fixing software bugs is a central part of software development. Developers are therefore often confronted with the task of identifying whether a code snippet contains a bug and where it is located. Recently, data-driven approaches have been employed to automate this process. These so called neural bug detectors are trained on millions of buggy and correct code snippets to learn the task of bug detection. This raises the question how the performance of neural bug detectors and software developers compare. As a first step, we study this question in the context of variable misuse bugs. To this end, we performed a study with over 100 software developers and two state-of-the-art approaches for neural bug detection. Our study shows that software developers are on average slightly better than neural bug detectors – even though the bug detectors are trained specifically for this task. In addition, we identified several bottlenecks in existing neural bug detectors which could be mitigated in the future to improve their bug detection performance.
  • Citation
  • BibTeX
Richter, C., Haltermann, J., Jakobs, M.-C., Pauck, F., Schott, S. & Wehrheim, H., (2023). Variable Misuse Detection: Software Developers versus Neural Bug Detectors. In: Engels, G., Hebig, R. & Tichy, M. (Hrsg.), Software Engineering 2023. Bonn: Gesellschaft für Informatik e.V.. (S. 103-104).
@inproceedings{mci/Richter2023,
author = {Richter, Cedric AND Haltermann, Jan AND Jakobs, Marie-Christine AND Pauck, Felix AND Schott, Stefan AND Wehrheim, Heike},
title = {Variable Misuse Detection: Software Developers versus Neural Bug Detectors},
booktitle = {Software Engineering 2023},
year = {2023},
editor = {Engels, Gregor AND Hebig, Regina AND Tichy, Matthias} ,
pages = { 103-104 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
DateienGroesseFormatAnzeige
paper38.pdf333.0Kb PDF View/Open

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

ISBN: 978-3-88579-726-5
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2023
Language: en (en)
Content Type: Text/Conference Paper

Keywords

  • Bug detection
  • variable misuse bugs
  • empirical study
Collections
  • P332 - Software Engineering 2023 [60]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.