Logo des Repositoriums
 
Konferenzbeitrag

WebTensor: Towards high-performance raster data analysis in the browser

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2023

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Quelle

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

We present WebTensor, a chunked tensor implementation for WebAssembly (Wasm) compiled from C++ and designed to efficiently analyze raster data directly in the browser. WebTensor allows loading (chunked) data from various backends, manipulating it by aggregations and forwarding computed results in a zero-copy manner to JavaScript so that they can be further processed or visualized. We demonstrate the performance advantages of WebTensor by benchmarking data access and aggregation operations, and compare it against a JavaScript version of Webtensor compiled from the same C++ code.

Beschreibung

Naumann, Lucas Fabian (2023): WebTensor: Towards high-performance raster data analysis in the browser. BTW 2023. DOI: 10.18420/BTW2023-75. Bonn: Gesellschaft für Informatik e.V.. ISBN: 978-3-88579-725-8. pp. 1083-1089. Dresden, Germany. 06.-10. März 2023

Zitierform

Tags