Logo des Repositoriums
 
Konferenzbeitrag

Using Multi-System Monitoring Time Series to Predict Performance Events

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2019

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

The prediction of failures and other mission-critical events plays an important role in operating today’s software systems and has drawn the attention of many researchers. Event prediction is particularly challenging if multiple systems are involved. In this paper, we thus present an event prediction model which utilizes time series monitoring data from multiple software systems to predict performance events. Our approach incorporates a comprehensive, multi-system data preprocessing framework for creating various feature vector sets, which we then use to train a random forest classifier to evaluate our multi-system event prediction. Our preliminary evaluation based on data from monitoring 250 systems over a period of 20 days shows promising results.

Beschreibung

Schörgenhumer, Andreas; Kahlhofer, Mario; Chalupar, Peter; Mössenböck, Hanspeter; Grünbacher, Paul (2019): Using Multi-System Monitoring Time Series to Predict Performance Events. Softwaretechnik-Trends Band 39, Heft 3. Bonn: Gesellschaft für Informatik e.V.. PISSN: 0720-8928. pp. 55-57. 9th Symposium on Software Performance (SSP 2018). Hildesheim. 8.-9. November 2018

Zitierform

DOI

Tags