GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • INFORMATIK - Jahrestagung der Gesellschaft für Informatik e.V.
  • P275 - INFORMATIK 2017
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • INFORMATIK - Jahrestagung der Gesellschaft für Informatik e.V.
  • P275 - INFORMATIK 2017
  • View Item

Deep Convolutional Neural Networks for Pose Estimation in Image-Graphics Search

Author:
Eberts, Markus [DBLP] ;
Ulges, Adrian [DBLP]
Abstract
Deep Convolutional Neural Networks (CNNs) have recently been highly successful in various image understanding tasks, ranging from object category recognition over image classification to scene segmentation. We employ CNNs for pose estimation in a cross-modal retrieval system, which -given a photo of an object -allows users to retrieve the best match from a repository of 3D models. As our system is supposed to display retrieved 3D models from the same perspective as the query image (potentially with virtual objects blended over), the pose of the object relative to the camera needs to be estimated. To do so, we study two CNN models. The first is based on end-to-end learning, i.e. a regression neural network directly estimates the pose. The second uses transfer learning with a very deep CNN pre-trained on a large-scale image collection. In quantitative experiments on a set of 3D models and real-world photos of chairs, we compare both models and show that while the end-to-end learning approach performs well on the domain it was trained on (graphics) it suffers from the capability to generalize to a new domain (photos). The transfer learning approach on the other hand handles this domain drift much better, resulting in an average angle deviation from the ground truth angle of about 14 degrees on photos.
  • Citation
  • BibTeX
Eberts, M. & Ulges, A., (2017). Deep Convolutional Neural Networks for Pose Estimation in Image-Graphics Search. In: Eibl, M. & Gaedke, M. (Hrsg.), INFORMATIK 2017. Gesellschaft für Informatik, Bonn. (S. 907-914). DOI: 10.18420/in2017_92
@inproceedings{mci/Eberts2017,
author = {Eberts, Markus AND Ulges, Adrian},
title = {Deep Convolutional Neural Networks for Pose Estimation in Image-Graphics Search},
booktitle = {INFORMATIK 2017},
year = {2017},
editor = {Eibl, Maximilian AND Gaedke, Martin} ,
pages = { 907-914 } ,
doi = { 10.18420/in2017_92 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
DateienGroesseFormatAnzeige
B11-5.pdf11.98Mb PDF View/Open

Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/in2017_92

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

DOI: 10.18420/in2017_92
ISBN: 978-3-88579-669-5
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2017
Language: en (en)

Keywords

  • pose estimation
  • image retrieval
  • deep learning
  • transfer learning
Collections
  • P275 - INFORMATIK 2017 [266]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.