Logo des Repositoriums
 
Konferenzbeitrag

Deep Learning Datasets Challenges For Semantic Segmentation - A Survey

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2023

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

This survey offers a comprehensive analysis of challenges encountered when employing large-scale datasets for deep learning-based semantic segmentation, an area with significant implica- tions for industries such as autonomous driving, precision agriculture, and medical imaging. Through a systematic review of 94 papers from Papers with Code, we identified 32 substantial challenges, which we categorized into six key areas: Data Quality and Quantity, Data Preprocessing, Resource Constraints, Data Management and Privacy, Generalization, and Data Compatibility. By identifying and explicating these challenges, our research provides a crucial reference point for future studies aiming to address these issues and enhance the performance of deep learning models for semantic segmentation. Future work will focus on leveraging AI and semantic technologies to provide solutions to these challenges.

Beschreibung

Ponciano, Claire; Schaffert, Markus; Ponciano, Jean-Jacques (2023): Deep Learning Datasets Challenges For Semantic Segmentation - A Survey. INFORMATIK 2023 - Designing Futures: Zukünfte gestalten. DOI: 10.18420/inf2023_04. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-731-9. pp. 57-70. Young Scientists and early-stage research in Data Science Workshop (YSDS-23). Berlin. 26.-29. September 2023

Zitierform

Tags