Logo des Repositoriums
 
Konferenzbeitrag

Contactless Palmprint Recognition for Children

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2023

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Effective distribution of nutritional and healthcare aid for children, particularly infants and toddlers, in the world’s least developed and most impoverished countries, is a major problem due to lack of reliable identification documents. We present a mobile based contactless palmprint recognition system, Child Palm-ID, which meets the requirements of usability, cost, and accuracy for child recognition. On a contactless child palmprint database, Child-PalmDB1, with 1,020 unique palms (age range of 6 mos. to 48 mos.), Child Palm-ID achieves a TAR=94.8% at FAR=0.1%. Child Palm-ID is also able to recognize adults, achieving a TAR=99.5% on the CASIA contactless palmprint database and a TAR=100% on the COEP contactless adult palmprint database, both at FAR=0.1%. For child palmprint images captured at an interval of five months with differences in standoff distance, illumination and motion blur, the TAR drops to 80.5% at FAR=0.1%. This indicates that more research remains in contactless child palmprint recognition.

Beschreibung

Akash M Godbole, Steven A Grosz (2023): Contactless Palmprint Recognition for Children. BIOSIG 2023. Gesellschaft für Informatik e.V.. ISSN: 1617-5468. ISBN: 978-3-88579-733-3

Zitierform

DOI

Tags