Logo des Repositoriums
 
Workshopbeitrag

Modeling meets Large Language Models

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Workshop Paper

Zusatzinformation

Datum

2024

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Modeling business processes is often challenging due to its complexity and potential for errors. One key issue arises when process experts and modelers are different individuals, which can lead to communication gaps and result in low-quality business process models. Recognizing this, our paper prioritizes the initial phase of modeling in Business Process Management (BPM). We propose a method that leverages Large Language Models (LLMs) to efficiently transform written business process descriptions into comprehensive graphical models. This approach offers a standardized and streamlined procedure to enhance the quality and effectiveness of business process modeling. While we focus on Petri nets as a primary example, our approach is adaptable to other graphical modeling languages. We present a novel method involving a series of LLMs to extract essential data, setting the stage for creating various graphical models. This technique aims to generate initial drafts that can be further refined, and its sequential application allows for adaptability to different modeling tools, including but not limited to the Horus Business Modeler.

Beschreibung

Forell, Martin; Schüler, Selina  (2024): Modeling meets Large Language Models. Modellierung 2024 Satellite Events. DOI: 10.18420/modellierung2024-ws-003. Gesellschaft für Informatik e.V.. LLM4Modeling. Potsdam. 12. - 15. März

Zitierform

Tags