Logo des Repositoriums
 
Konferenzbeitrag
Full Review

Learning from hyperspectral remote sensing data for machine learning algorithms in earth science

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2024

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

Machine Learning in Earth sciences heavily depends on sufficient training data for proper generalization. Since in-situ ground truth data is rarely available and cost-intensive to obtain, this study presents a new approach of deriving training data from hyperspectral remote sensing satellites by physical spectral signatures to use them for data-driven models with operationally available multispectral data. Examples include monitoring of crop rotation, winter greening, soil organic matter, and detection of plastic covered greenhouses (PCGs).

Beschreibung

Christoph Jörges, Sandra Dotzler (2024): Learning from hyperspectral remote sensing data for machine learning algorithms in earth science. 44. GIL - Jahrestagung, Biodiversität fördern durch digitale Landwirtschaft. DOI: 10.18420/giljt2024_61. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-738-8. pp. 305-310. Stuttgart. 27.-28. Februar 2024

Zitierform

Tags