Logo des Repositoriums
 
Zeitschriftenartikel

Machine learning in sensor identification for industrial systems

Vorschaubild nicht verfügbar

Volltext URI

Dokumententyp

Text/Journal Article

Zusatzinformation

Datum

2023

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

De Gruyter

Zusammenfassung

This paper explores the potential and limitations of machine learning for sensor signal identification in complex industrial systems. The objective is a tool to assist engineers in finding the correct inputs to digital twins and simulations from a set of unlabeled sensor signals. A naive end-to-end machine learning approach is usually not applicable to this task, as it would require many comparable industrial systems to learn from. We present a semi-structured approach that uses observations from the manual classification of time series and combines different algorithms to partition the set of signals into smaller groups of signals that share common characteristics. Using a real-world dataset from several power plants, we evaluate our solution for scaling-invariant measurement identification and functional relationship inference using change-point correlations.

Beschreibung

Weber, Lucas; Lenz, Richard (2023): Machine learning in sensor identification for industrial systems. it - Information Technology: Vol. 65, No. 4-5. DOI: https://doi.org/10.1515/itit-2023-0051. De Gruyter. ISSN: 2196-7032

Zitierform

Tags