Show simple item record

dc.contributor.authorHijazi, Y.
dc.contributor.authorHagen, H.
dc.contributor.authorHansen, C. D.
dc.contributor.authorJoy, K. I.
dc.contributor.editorHagen, Hans
dc.contributor.editorHering-Bertram, Martin
dc.contributor.editorGarth, Christoph
dc.date.accessioned2017-09-23T07:01:44Z
dc.date.available2017-09-23T07:01:44Z
dc.date.issued2008
dc.identifier.isbn978-3-88579-441-7
dc.identifier.issn1617-5468
dc.identifier.urihttp://dl.gi.de/handle/20.500.12116/4619
dc.description.abstractInterval arithmetic was introduced by Ramon Moore [Moo66] in the 1960s as an approach to bound rounding errors in mathematical computation. The theory of interval analysis emerged considering the computation of both the exact solution and the error term as a single entity, i.e. the interval. Though a simple idea, it is a very powerful technique with numerous applications in mathematics, computer science, and engineering. In this survey we discuss the basic concepts of interval arithmetic and some of its extensions, and review successful applications of this theory in particular in computer science.en
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofVisualization of large and unstructured data sets
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-7
dc.titleWhy interval arithmetic is so usefulen
dc.pubPlaceBonn
mci.reference.pages148-163
mci.conference.locationKaiserslautern
mci.conference.date9. - 11. September 2007


Files in this item

Thumbnail

Show simple item record