GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P270 - BIOSIG 2017 - Proceedings of the 16th International Conference of the Biometrics Special Interest Group
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P270 - BIOSIG 2017 - Proceedings of the 16th International Conference of the Biometrics Special Interest Group
  • View Item

Multi-scale facial scanning via spatial LSTM for latent facial feature representation

Author:
Kim,Seong Tae [DBLP] ;
Choi,Yeoreum [DBLP] ;
Ro,Yong Man [DBLP]
Abstract
In the past few decades, automatic face recognition has been an important vision task. In this paper, we exploit the spatial relationships of facial local regions by using a novel deep network. In the proposed method, face is spatially scanned with spatial long short-term memory (LSTM) to encode the spatial correlation of facial regions. Moreover, with facial regions of various scales, the complementary information of the multi-scale facial features is encoded. Experimental results on public database showed that the proposed method outperformed the conventional methods by improving the face recognition accuracy under illumination variation.
  • Citation
  • BibTeX
Kim, Se. T., Choi, Ye. & Ro, Yo. M., (2017). Multi-scale facial scanning via spatial LSTM for latent facial feature representation. In: Brömme, Ar., Busch, Ch., Dantcheva, An., Rathgeb, Ch. & Uhl, An. (Hrsg.), BIOSIG 2017. Gesellschaft für Informatik, Bonn. (S. 127-135).
@inproceedings{mci/Kim2017,
author = {Kim,Seong Tae AND Choi,Yeoreum AND Ro,Yong Man},
title = {Multi-scale facial scanning via spatial LSTM for latent facial feature representation},
booktitle = {BIOSIG 2017},
year = {2017},
editor = {Brömme,Arslan AND Busch,Christoph AND Dantcheva,Antitza AND Rathgeb,Christian AND Uhl,Andreas} ,
pages = { 127-135 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
DateienGroesseFormatAnzeige
paper12.pdf369.8Kb PDF View/Open

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

ISBN: 978-3-88579-664-0
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2017
Language: en (en)

Keywords

  • Face recognition
  • facial feature representation
  • spatial LSTM
  • deep learning
Collections
  • P270 - BIOSIG 2017 - Proceedings of the 16th International Conference of the Biometrics Special Interest Group [29]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.