Logo des Repositoriums
 
Textdokument

Multi-scale facial scanning via spatial LSTM for latent facial feature representation

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2017

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

In the past few decades, automatic face recognition has been an important vision task. In this paper, we exploit the spatial relationships of facial local regions by using a novel deep network. In the proposed method, face is spatially scanned with spatial long short-term memory (LSTM) to encode the spatial correlation of facial regions. Moreover, with facial regions of various scales, the complementary information of the multi-scale facial features is encoded. Experimental results on public database showed that the proposed method outperformed the conventional methods by improving the face recognition accuracy under illumination variation.

Beschreibung

Kim,Seong Tae; Choi,Yeoreum; Ro,Yong Man (2017): Multi-scale facial scanning via spatial LSTM for latent facial feature representation. BIOSIG 2017. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-664-0. pp. 127-135. Regular Research Papers. Darmstadt, Germany. 20.-22. September 2017

Zitierform

DOI

Tags