Multi-scale facial scanning via spatial LSTM for latent facial feature representation
Abstract
In the past few decades, automatic face recognition has been an important vision task. In this paper, we exploit the spatial relationships of facial local regions by using a novel deep network. In the proposed method, face is spatially scanned with spatial long short-term memory (LSTM) to encode the spatial correlation of facial regions. Moreover, with facial regions of various scales, the complementary information of the multi-scale facial features is encoded. Experimental results on public database showed that the proposed method outperformed the conventional methods by improving the face recognition accuracy under illumination variation.
- Citation
- BibTeX
Kim, Se. T., Choi, Ye. & Ro, Yo. M.,
(2017).
Multi-scale facial scanning via spatial LSTM for latent facial feature representation.
In:
Brömme, Ar., Busch, Ch., Dantcheva, An., Rathgeb, Ch. & Uhl, An.
(Hrsg.),
BIOSIG 2017.
Gesellschaft für Informatik, Bonn.
(S. 127-135).
@inproceedings{mci/Kim2017,
author = {Kim,Seong Tae AND Choi,Yeoreum AND Ro,Yong Man},
title = {Multi-scale facial scanning via spatial LSTM for latent facial feature representation},
booktitle = {BIOSIG 2017},
year = {2017},
editor = {Brömme,Arslan AND Busch,Christoph AND Dantcheva,Antitza AND Rathgeb,Christian AND Uhl,Andreas} ,
pages = { 127-135 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
author = {Kim,Seong Tae AND Choi,Yeoreum AND Ro,Yong Man},
title = {Multi-scale facial scanning via spatial LSTM for latent facial feature representation},
booktitle = {BIOSIG 2017},
year = {2017},
editor = {Brömme,Arslan AND Busch,Christoph AND Dantcheva,Antitza AND Rathgeb,Christian AND Uhl,Andreas} ,
pages = { 127-135 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
paper12.pdf | 369.8Kb | View/ |
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
ISBN: 978-3-88579-664-0
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2017
Language:
(en)
