GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P270 - BIOSIG 2017 - Proceedings of the 16th International Conference of the Biometrics Special Interest Group
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BIOSIG - Biometrics and Electronic Signatures
  • P270 - BIOSIG 2017 - Proceedings of the 16th International Conference of the Biometrics Special Interest Group
  • View Item

Deep Quality-informed Score Normalization for Privacy-friendly Speaker Recognition in unconstrained Environments

Author:
Nautsch,Andreas [DBLP] ;
Steen,Søren Trads [DBLP] ;
Busch,Christoph [DBLP]
Abstract
In scenarios that are ambitious to protect sensitive data in compliance with privacy regulations, conventional score normalization utilizing large proportions of speaker cohort data is not feasible for existing technology, since the entire cohort data would need to be stored on each mobile device. Hence, in this work we motivate score normalization utilizing deep neural networks. Considering unconstrained environments, a quality-informed scheme is proposed, normalizing scores depending on sample quality estimates in terms of completeness and signal degradation by noise. Utilizing the conventional PLDA score, comparison i-vectors, and corresponding quality vectors, we aim at mimicking cohort based score normalization optimizing the Cmin llr discrimination criterion. Examining the I4U data sets for the 2012 NIST SRE, an 8.7% relative gain is yielded in a pooled 55-condition scenario with a corresponding condition-averaged relative gain of 6.2% in terms of Cmin llr . Robustness analyses towards sensitivity regarding unseen conditions are conducted, i.e. when conditions comprising lower quality samples are not available during training.
  • Citation
  • BibTeX
Nautsch, An., Steen, Sø. T. & Busch, Ch., (2017). Deep Quality-informed Score Normalization for Privacy-friendly Speaker Recognition in unconstrained Environments. In: Brömme, Ar., Busch, Ch., Dantcheva, An., Rathgeb, Ch. & Uhl, An. (Hrsg.), BIOSIG 2017. Gesellschaft für Informatik, Bonn. (S. 243-250).
@inproceedings{mci/Nautsch2017,
author = {Nautsch,Andreas AND Steen,Søren Trads AND Busch,Christoph},
title = {Deep Quality-informed Score Normalization for Privacy-friendly Speaker Recognition in unconstrained Environments},
booktitle = {BIOSIG 2017},
year = {2017},
editor = {Brömme,Arslan AND Busch,Christoph AND Dantcheva,Antitza AND Rathgeb,Christian AND Uhl,Andreas} ,
pages = { 243-250 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
DateienGroesseFormatAnzeige
paper24.pdf125.5Kb PDF View/Open

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

ISBN: 978-3-88579-664-0
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2017
Language: en (en)

Keywords

  • speaker recognition
  • score normalization
  • unconstrained environments
  • neural networks
  • deep learning
Collections
  • P270 - BIOSIG 2017 - Proceedings of the 16th International Conference of the Biometrics Special Interest Group [29]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.