GI LogoGI Logo
  • Login
Digital Library
    • All of DSpace

      • Communities & Collections
      • Titles
      • Authors
      • By Issue Date
      • Subjects
    • This Collection

      • Titles
      • Authors
      • By Issue Date
      • Subjects
Digital Library Gesellschaft für Informatik e.V.
GI-DL
    • English
    • Deutsch
  • English 
    • English
    • Deutsch
View Item 
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BTW - Datenbanksysteme für Business, Technologie und Web
  • P265 - BTW2017 - Datenbanksysteme für Business, Technologie und Web
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
  •   DSpace Home
  • Lecture Notes in Informatics
  • Proceedings
  • BTW - Datenbanksysteme für Business, Technologie und Web
  • P265 - BTW2017 - Datenbanksysteme für Business, Technologie und Web
  • View Item

Efficient Batched Distance and Centrality Computation in Unweighted and Weighted Graphs

Author:
Then, Manuel [DBLP] ;
Günnemann, Stephan [DBLP] ;
Kemper, Alfons [DBLP] ;
Neumann, Thomas [DBLP]
Abstract
Distance and centrality computations are important building blocks for modern graph databases as well as for dedicated graph analytics systems. Two commonly used centrality metrics are the compute-intense closeness and betweenness centralities, which require numerous expensive shortest distance calculations. We propose batched algorithm execution to run multiple distance and centrality computations at the same time and let them share common graph and data accesses. Batched execution amortizes the high cost of random memory accesses and presents new vectorization potential on modern CPUs and compute accelerators. We show how batched algorithm execution can be leveraged to significantly improve the performance of distance, closeness, and betweenness centrality calculations on unweighted and weighted graphs. Our evaluation demonstrates that batched execution can improve the runtime of these common metrics by over an order of magnitude.
  • Citation
  • BibTeX
Then, M., Günnemann, S., Kemper, A. & Neumann, T., (2017). Efficient Batched Distance and Centrality Computation in Unweighted and Weighted Graphs. In: Mitschang, B., Nicklas, D., Leymann, F., Schöning, H., Herschel, M., Teubner, J., Härder, T., Kopp, O. & Wieland, M. (Hrsg.), Datenbanksysteme für Business, Technologie und Web (BTW 2017). Gesellschaft für Informatik, Bonn. (S. 247-266).
@inproceedings{mci/Then2017,
author = {Then, Manuel AND Günnemann, Stephan AND Kemper, Alfons AND Neumann, Thomas},
title = {Efficient Batched Distance and Centrality Computation in Unweighted and Weighted Graphs},
booktitle = {Datenbanksysteme für Business, Technologie und Web (BTW 2017)},
year = {2017},
editor = {Mitschang, Bernhard AND Nicklas, Daniela AND Leymann, Frank AND Schöning, Harald AND Herschel, Melanie AND Teubner, Jens AND Härder, Theo AND Kopp, Oliver AND Wieland, Matthias} ,
pages = { 247-266 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
DateienGroesseFormatAnzeige
paper17.pdf557.5Kb PDF View/Open

Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback

More Info

ISBN: 978-3-88579-659-6
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2017
Language: en (en)
Content Type: Text/Conference Paper

Keywords

  • Graph Databases
  • Graph Analytics
  • Closeness Centrality
  • Betweenness Centrality
Collections
  • P265 - BTW2017 - Datenbanksysteme für Business, Technologie und Web [56]

Show full item record


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.

 

 


About uns | FAQ | Help | Imprint | Datenschutz

Gesellschaft für Informatik e.V. (GI), Kontakt: Geschäftsstelle der GI
Diese Digital Library basiert auf DSpace.