Logo des Repositoriums
 

Composition methods for link discovery

dc.contributor.authorHartung, Michael
dc.contributor.authorGroß, Anika
dc.contributor.authorRahm, Erhard
dc.contributor.editorMarkl, Volker
dc.contributor.editorSaake, Gunter
dc.contributor.editorSattler, Kai-Uwe
dc.contributor.editorHackenbroich, Gregor
dc.contributor.editorMitschang, Bernhard
dc.contributor.editorHärder, Theo
dc.contributor.editorKöppen, Veit
dc.date.accessioned2018-10-24T09:56:19Z
dc.date.available2018-10-24T09:56:19Z
dc.date.issued2013
dc.description.abstractThe Linked Open Data community publishes an increasing number of data sources on the so-called Data Web and interlinks them to support data integration applications. We investigate how the composition of existing links and mappings can help discovering new links and mappings between LOD sources. Often there will be many alternatives for composition so that the problem arises which paths can provide the best linking results with the least computation effort. We therefore investigate different methods to select and combine the most suitable mapping paths. We also propose an approach for selecting and composing individual links instead of entire mappings. We comparatively evaluate the methods on several real-world linking problems from the LOD cloud. The results show the high value of reusing and composing existing links as well as the high effectiveness of our methods.en
dc.identifier.isbn978-3-88579-608-4
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/17325
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofDatenbanksysteme für Business, Technologie und Web (BTW) 2029
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-214
dc.titleComposition methods for link discoveryen
dc.typeText/Conference Paper
gi.citation.endPage277
gi.citation.publisherPlaceBonn
gi.citation.startPage261
gi.conference.date13.-15. März 2013
gi.conference.locationMagdeburg
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
261.pdf
Größe:
252.4 KB
Format:
Adobe Portable Document Format