Konferenzbeitrag

Learning causal mechanisms

Lade...
Vorschaubild
Volltext URI
Dokumententyp
Text/Conference Paper
Datum
2019
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Quelle
INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft
Keynote Session
Verlag
Gesellschaft für Informatik e.V.
Zusammenfassung
In machine learning, we use data to automatically find dependences in the world, with the goal of predicting future observations. Most machine learning methods build on statistics, but one can also try to go beyond this, assaying causal structures underlying statistical dependences. Can such causal knowledge help prediction in machine learning tasks? We argue that this is indeed the case, due to the fact that causal models are more robust to changes that occur in real world datasets. We discuss implications of causal models for machine learning tasks, focusing on an assumption of ‘independent mechanisms’, and discuss an application in the field of exoplanet discovery.
Beschreibung
Schölkopf, Bernhard (2019): Learning causal mechanisms. INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft. DOI: 10.18420/inf2019_01. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-688-6. pp. 21-21. Keynote Session. Kassel. 23.-26. September 2019
Schlagwörter
Zitierform
Tags