Logo des Repositoriums
 

Investigating the impact of representation features on decision model comprehension (Extended Abstract)

dc.contributor.authorDjurica, Djordje
dc.contributor.authorKummer, Tyge F.
dc.contributor.authorMendling, Jan
dc.contributor.authorFigl, Kathrin
dc.contributor.editorLaue, Ralf
dc.contributor.editorFahrenkrog-Petersen, Stephan
dc.date.accessioned2024-05-08T08:24:46Z
dc.date.available2024-05-08T08:24:46Z
dc.date.issued2024
dc.description.abstractDecision models play a crucial role in the development of information systems for tasks such as system analysis and design, as well as compliance management. The effective presentation of these models is essential to ensure their accuracy and completeness. Existing research on their cognitive effectiveness remains inconclusive. Our study advances understanding by examining the detailed representation features of decision models, including type (tree versus table), structure (expanded versus frugal), and design (monochromatic versus colored). We demonstrate that the use of color can improve model-task fit, and that structural features can enhance comprehension. Utilizing eye-tracking, we analyzed the underlying mechanisms of these effects. Our findings provide valuable insights for cognitive information systems research and practical applications, offering guidance for both users and developers of decision models.en
dc.identifier.doi10.18420/EMISA2024_05
dc.identifier.isbn978-3-88579-743-2
dc.identifier.issn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/44017
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofEMISA 2024
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-349
dc.subjectcognitive fit theory
dc.subjectdecision models
dc.subjectexperiment
dc.subjectcolor highlighting
dc.titleInvestigating the impact of representation features on decision model comprehension (Extended Abstract)en
mci.conference.date13–14 March 2024
mci.conference.locationPotsdam
mci.conference.sessiontitleEnterprise Modeling and Information Systems Architecture (EMISA 2024)
mci.reference.pages35-37

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
C1-3.pdf
Größe:
491.69 KB
Format:
Adobe Portable Document Format