Logo des Repositoriums
 

Modern Project Portfolio Management– Analyzing the Potential of Artificial Intelligence

dc.contributor.authorPappert, Laura
dc.contributor.authorKusanke, Kristina
dc.contributor.editorKalenborn, Axel
dc.contributor.editorFazal-Baqaie, Masud
dc.contributor.editorLinssen, Oliver
dc.contributor.editorVolland, Alexander
dc.contributor.editorYigitbas, Enes
dc.contributor.editorEngstler, Martin
dc.contributor.editorBertram, Martin
dc.date.accessioned2023-11-28T11:03:50Z
dc.date.available2023-11-28T11:03:50Z
dc.date.issued2023
dc.description.abstractProject portfolio selection has been the focus of many researchers over the past two decades. Current developments, such as the coronavirus pandemic, ongoing energy crisis, and recession, limit human resources and investment budgets so that not all targeted projects can be implemented. In this paper, we complement the existing discourse on project portfolio management (PPM) in the face of artificial intelligence (AI) by conducting a group discussion within a company operating in the aviation industry regarding the potential, obstacles, and expectations of the future role of AIenabled tools in their work practice. In addition, we derive a concept that can be used along the PPM process to guide the basic AI technological implementation.en
dc.identifier.isbn978-3-88579-734-0
dc.identifier.issn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/42674
dc.language.isoen
dc.pubPlaceBonn
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofProjektmanagement und Vorgehensmodelle 2023 - Nachhaltige IT-Projekte
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-340
dc.subjectProject portfolio management (PPM)
dc.subjectartificial intelligence (AI)
dc.subjectgroup discussion
dc.subjectaviation industry
dc.titleModern Project Portfolio Management– Analyzing the Potential of Artificial Intelligenceen
dc.typeText/Conference Paper
mci.conference.date16.-17. November 2023
mci.conference.locationHagen
mci.conference.sessiontitleFachvortrag
mci.reference.pages125-136

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
PVM2023_10.pdf
Größe:
215.59 KB
Format:
Adobe Portable Document Format