Logo des Repositoriums
 

Improving IaaS Cloud Analyses by Black-Box Resource Demand Modeling

dc.contributor.authorGroenda, Henning
dc.contributor.authorStier, Christian
dc.date.accessioned2023-03-13T10:09:53Z
dc.date.available2023-03-13T10:09:53Z
dc.date.issued2015
dc.description.abstractIn Infrastructure as a Service (IaaS) Cloud scenarios, data center operators require specifications of Virtual Machine (VM) behavior for data center middle- and long-term planning and optimization. The planning is usually supported by simulations. While users can leverage white-box application knowledge, data center operators have to rely on metrics at the level of resource demands provided by virtualization and cloud middleware platforms. Existing simulations for data center planning do not combine both viewpoints and either require white-box knowledge or focus on short-term predictions using statistical estimators. Our approach allows modeling varying resource demand of black-box VMs based on the Descartes Load Intensity Model (DLIM). The black-box VM models are integrated in the SimuLizar performance simulator complementing the existing grey- and white-box models in order to improve reasoning on (de-) consolidation decisions.en
dc.identifier.pissn0720-8928
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40769
dc.language.isoen
dc.publisherGeselllschaft für Informatik e.V.
dc.relation.ispartofSoftwaretechnik-Trends Band 35, Heft 3
dc.subjectPerformance Prediction
dc.subjectModeling
dc.subjectSimuLizar
dc.subjectDLIM
dc.subjectPalladio
dc.subjectDesign-Time
dc.titleImproving IaaS Cloud Analyses by Black-Box Resource Demand Modelingen
dc.typeText/Journal Article
gi.citation.publisherPlaceBonn
gi.conference.sessiontitleSonderteil: Proceedings of the Symposium on Software Performance (SSP) 2015, 4. - 6. November 2015, Munich, Germany

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
SSP_2015_paper_6.pdf
Größe:
607.84 KB
Format:
Adobe Portable Document Format