Logo des Repositoriums
 

Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning

dc.contributor.authorBoehm, Matthias
dc.contributor.authorEvfimievski, Alexandre
dc.contributor.authorReinwald, Berthold
dc.contributor.editorGrust, Torsten
dc.contributor.editorNaumann, Felix
dc.contributor.editorBöhm, Alexander
dc.contributor.editorLehner, Wolfgang
dc.contributor.editorHärder, Theo
dc.contributor.editorRahm, Erhard
dc.contributor.editorHeuer, Andreas
dc.contributor.editorKlettke, Meike
dc.contributor.editorMeyer, Holger
dc.date.accessioned2019-04-11T07:21:20Z
dc.date.available2019-04-11T07:21:20Z
dc.date.issued2019
dc.description.abstractCumulative aggregates are often overlooked yet important operations in large-scale machine learning (ML) systems. Examples are prefix sums and more complex aggregates, but also preprocessing techniques such as the removal of empty rows or columns. These operations are challenging to parallelize over distributed, blocked matrices—as commonly used in ML systems—due to recursive data dependencies. However, computing prefix sums is a classic example of a presumably sequential operation that can be efficiently parallelized via aggregation trees. In this paper, we describe an efficient framework for data-parallel cumulative aggregates over distributed, blocked matrices. The basic idea is a self-similar operator composed of a forward cascade that reduces the data size by orders of magnitude per iteration until the data fits in local memory, a local cumulative aggregate over the partial aggregates, and a backward cascade to produce the final result. We also generalize this framework for complex cumulative aggregates of sum-product expressions, and characterize the class of supported operations. Finally, we describe the end-to-end compiler and runtime integration into SystemML, and the use of cumulative aggregates in other operations. Our experiments show that this framework achieves both high performance for moderate data sizes and good scalability.en
dc.identifier.doi10.18420/btw2019-17
dc.identifier.isbn978-3-88579-683-1
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/21701
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofBTW 2019
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) – Proceedings, Volume P-289
dc.subjectCumulative Aggregates
dc.subjectML Systems
dc.subjectLarge-Scale Machine Learning
dc.subjectData-Parallel Computation
dc.subjectApache SystemML
dc.titleEfficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learningen
gi.citation.endPage286
gi.citation.startPage267
gi.conference.date4.-8. März 2019
gi.conference.locationRostock
gi.conference.sessiontitleWissenschaftliche Beiträge

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
B6-2.pdf
Größe:
839.21 KB
Format:
Adobe Portable Document Format