Enhancing Digital Twins for Production through Process Mining Techniques: A Literature Review
dc.contributor.author | Schumacher, Marcel | |
dc.contributor.author | Buschermöhle, Ralf | |
dc.contributor.author | Haak, Liane | |
dc.contributor.author | Höfinghoff, Max | |
dc.contributor.author | Seipolt, Arne | |
dc.contributor.author | Korn, Goy-Hinrich | |
dc.contributor.editor | Klein, Maike | |
dc.contributor.editor | Krupka, Daniel | |
dc.contributor.editor | Winter, Cornelia | |
dc.contributor.editor | Wohlgemuth, Volker | |
dc.date.accessioned | 2023-11-29T14:50:20Z | |
dc.date.available | 2023-11-29T14:50:20Z | |
dc.date.issued | 2023 | |
dc.description.abstract | A digital twin (DT) plays a vital role in the advancement of manufacturers towards Industry 4.0. However, the creation and maintenance of DTs can be time-consuming. One approach to streamline this process is the utilization of process mining (PM) methods and techniques, which can automatically generate valuable information for DTs. Therefore, this paper aims to examine different approaches that augment DTs with PM and explore their effects. The review categorizes these approaches into three groups: theoretical approaches, approaches with laboratory case studies, and approaches with real-world case studies conducted by manufacturers. The review reveals that the use of PM can enhance the flexibility and sustainability of DTs. However, this improvement comes at the cost of requiring high-quality data and more data preparation efforts. | en |
dc.identifier.doi | 10.18420/inf2023_146 | |
dc.identifier.isbn | 978-3-88579-731-9 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/43070 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | INFORMATIK 2023 - Designing Futures: Zukünfte gestalten | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-337 | |
dc.subject | Process Mining | |
dc.subject | Digital Twin | |
dc.subject | Production | |
dc.title | Enhancing Digital Twins for Production through Process Mining Techniques: A Literature Review | en |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 1406 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 1399 | |
gi.conference.date | 26.-29. September 2023 | |
gi.conference.location | Berlin | |
gi.conference.sessiontitle | Ökologische Nachhaltigkeit - Zukunft nachhaltig gestalten durch digitalisierte Wertschöpfungsprozesse (DigiWe) |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- 07_04_03_Schumacher.pdf
- Größe:
- 278.66 KB
- Format:
- Adobe Portable Document Format