Logo des Repositoriums
 

Explainable Online Reinforcement Learning for Adaptive Systems

dc.contributor.authorFeit, Felix
dc.contributor.authorMetzger, Andreas
dc.contributor.authorPohl, Klaus
dc.contributor.editorEngels, Gregor
dc.contributor.editorHebig, Regina
dc.contributor.editorTichy, Matthias
dc.date.accessioned2023-01-18T13:38:39Z
dc.date.available2023-01-18T13:38:39Z
dc.date.issued2023
dc.description.abstractThis talk presents our work on explainable online reinforcement learning for self-adaptive systems published at the 3rd IEEE Intl. Conf. on Autonomic Computing and Self-Organizing Systems.en
dc.identifier.isbn978-3-88579-726-5
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40077
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftware Engineering 2023
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-332
dc.subjectAdaptation
dc.subjectReinforcement Learning
dc.subjectExplainability
dc.subjectInterpretability
dc.titleExplainable Online Reinforcement Learning for Adaptive Systemsen
dc.typeText/Conference Paper
gi.citation.endPage54
gi.citation.publisherPlaceBonn
gi.citation.startPage53
gi.conference.date20.–24. Februar 2023
gi.conference.locationPaderborn
gi.conference.sessiontitleWissenschaftliches Hauptprogramm

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper13.pdf
Größe:
448.55 KB
Format:
Adobe Portable Document Format