Logo des Repositoriums
 

Gaining insights into the information distribution of Light Fields and enabling adaptive Light Field processing

dc.contributor.authorKremer, Robin
dc.contributor.editorGesellschaft für Informatik e.V.
dc.date.accessioned2023-02-21T09:39:20Z
dc.date.available2023-02-21T09:39:20Z
dc.date.issued2022
dc.description.abstractThanks to smartphones with several cameras, capturing a scene from multiple view points has become increasingly more available. Together with the evolving computing capabilities of modern hardware, light field processing has gained a lot of attention in the last years [Br20; Fl19; Mi20]. These techniques rely on neural networks to generate representations of the light field data. Other work assumes certain scene properties to enable light field processing (like lambertian radiation). The work shown here uses depth maps to transform the light field into a froxel (frustum + voxel)[Ev15] centered representation enabling unique post processing steps and analysis of the ray distribution in a scene. But more importantly it paves the way to quantify the information distribution within a scene. Based on this information appropriate adaptive filtering techniques can be applied. The transformation into the froxel centric representation is compatible with techniques like NERF.en
dc.identifier.isbn978-3-88579-752-4
dc.identifier.pissn1614-3213
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/40239
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofSKILL 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Seminars, Volume S-18
dc.subjectLightfields
dc.subjectFroxels
dc.subjectLight Fields
dc.subjectFrustum
dc.subjectVoxel
dc.subjectNeural Radiance Field
dc.subjectRay Classification
dc.titleGaining insights into the information distribution of Light Fields and enabling adaptive Light Field processingen
gi.citation.endPage71
gi.citation.startPage61
gi.conference.date29.-30. September 2022
gi.conference.locationHamburg
gi.conference.sessiontitleMaschinelles Lernen und Informatik in der Anwendung

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
A2-2.pdf
Größe:
493.95 KB
Format:
Adobe Portable Document Format