Research Knowledge Graphs in NFDI4DS
dc.contributor.author | Karmakar, Saurav | |
dc.contributor.author | Zloch, Matthäus | |
dc.contributor.author | Limani, Fidan | |
dc.contributor.author | Zapilko, Benjamin | |
dc.contributor.author | Upadhyaya, Sharmila | |
dc.contributor.author | D’Souza, Jennifer | |
dc.contributor.author | Castro, Leyla J. | |
dc.contributor.author | Rehm, Georg | |
dc.contributor.author | Ackermann, Marcel R. | |
dc.contributor.author | Sack, Harald | |
dc.contributor.author | Boukhers, Zeyd | |
dc.contributor.author | Schimmler, Sonja | |
dc.contributor.author | Dessí, Danilo | |
dc.contributor.author | Mutschke, Peter | |
dc.contributor.author | Dietze, Stefan | |
dc.contributor.editor | Klein, Maike | |
dc.contributor.editor | Krupka, Daniel | |
dc.contributor.editor | Winter, Cornelia | |
dc.contributor.editor | Wohlgemuth, Volker | |
dc.date.accessioned | 2023-11-29T14:50:17Z | |
dc.date.available | 2023-11-29T14:50:17Z | |
dc.date.issued | 2023 | |
dc.description.abstract | The ever-increasing amount of research output through scientific articles requires means to enable transparency and a better understanding of key entities of the research lifecycle, referred to as research artifacts, such as methods, software, datasets, etc. Research Knowledge Graphs (RKG) make research artifacts findable, accessible, interoperable, and reusable (FAIR) and facilitate their interpretability. In this article, we describe the role of RKGs, from their construction to the expected benefits, including an overview and a vision of their use within the German National Research Data Infrastructure (NFDI) consortium NFDI4DataScience (NFDI4DS). This paper includes insights about the existing RKGs, how to formally represent research artifacts, and how this supports better transparency and reproducibility in data science and artificial intelligence. We also discuss key challenges, such as RKG construction, and integration, and give an outlook on future work. | en |
dc.identifier.doi | 10.18420/inf2023_102 | |
dc.identifier.isbn | 978-3-88579-731-9 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/43022 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | INFORMATIK 2023 - Designing Futures: Zukünfte gestalten | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-337 | |
dc.subject | NFDI | |
dc.subject | NFDI4DS | |
dc.subject | Data Science | |
dc.subject | Research Knowledge Graph | |
dc.subject | Scholarly Data | |
dc.subject | Knowledge Graph Integration | |
dc.subject | Knowledge Graph Federation | |
dc.title | Research Knowledge Graphs in NFDI4DS | en |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 918 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 909 | |
gi.conference.date | 26.-29. September 2023 | |
gi.conference.location | Berlin | |
gi.conference.sessiontitle | Öffentliche Infrastruktur - Research Data Infrastructures for Data Science and AI (RDI4DataScience) |
Dateien
Originalbündel
1 - 1 von 1