Logo des Repositoriums
 
Konferenzbeitrag

Pose Variability Compensation Using Projective Transformation Forensic Face Recognition

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Text/Conference Paper

Zusatzinformation

Datum

2015

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Verlag

Gesellschaft für Informatik e.V.

Zusammenfassung

The forensic scenario is a very challenging problem within the face recognition community. The verification problem in this case typically implies the comparison between a high quality controlled image against a low quality image extracted from a close circuit television (CCTV). One of the downsides that frequently presents this scenario is pose deviation since CCTV devices are usually placed in ceilings and the subject normally walks facing forward. This paper proves the value of the projective transformation as a simple tool to compensate the pose distortion present in surveillance images in forensic scenarios. We evaluate the influence of this projective transformation over a baseline system based on principal component analysis and support vector machines (PCA-SVM) for the SCface database. The application of this technique improves greatly the performance, being this improvement more striking with closer images. Results suggest the convenience of this transformation within the preprocessing stage of all CCTV images. The average relative improvement reached with this method is around 30\% of EER.

Beschreibung

Gonzalez-Sosa, Ester; Vera-Rodriguez, Ruben; Fierrez, Julian; Tome, Pedro; Ortega-Garcia, Javier (2015): Pose Variability Compensation Using Projective Transformation Forensic Face Recognition. BIOSIG 2015. Bonn: Gesellschaft für Informatik e.V.. PISSN: 1617-5468. ISBN: 978-3-88579-639-8. pp. 27-38. Darmstadt. 9.-11. September 2015

Schlagwörter

Zitierform

DOI

Tags