Logo des Repositoriums
 

Steady-State Visual Evoked Potentials for EEG-Based Biometric Identification

dc.contributor.authorPiciucco,Emanuela
dc.contributor.authorMaiorana,Emanuele
dc.contributor.authorFalzon,Owen
dc.contributor.authorCamilleri,Kenneth P.
dc.contributor.authorCampisi,Patrizio
dc.contributor.editorBrömme,Arslan
dc.contributor.editorBusch,Christoph
dc.contributor.editorDantcheva,Antitza
dc.contributor.editorRathgeb,Christian
dc.contributor.editorUhl,Andreas
dc.date.accessioned2017-09-26T09:21:00Z
dc.date.available2017-09-26T09:21:00Z
dc.date.issued2017
dc.description.abstractIn this paper we propose a biometric recognition system based on steady-state visual evoked potentials (SSVEPs), exploiting brain signals elicited by repetitive stimuli having a constant frequency as identifiers. EEG responses to SSVEP stimuli flickering at different frequencies are recorded, and both mel-frequency cepstral coefficients (MFCCs) and autoregressive (AR) reflection coefficients are used as discriminative features of the enrolled users. An analysis of the permanence across time of the brain response to SSVEP stimuli is also performed, by exploiting EEG data acquired in sessions disjoint in time. The employed database is composed by EEG recordings taken from 25 healthy subjects during two different sessions with 15 day average distance between them. The results show that good recognition performance and a high level of permanence can be reached exploiting the proposed method.en
dc.identifier.isbn978-3-88579-664-0
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/4653
dc.language.isoen
dc.publisherGesellschaft für Informatik, Bonn
dc.relation.ispartofBIOSIG 2017
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-70
dc.subjectEEG Recognition
dc.subjectSSVEP
dc.subjectBiometrics
dc.titleSteady-State Visual Evoked Potentials for EEG-Based Biometric Identificationen
gi.citation.endPage234
gi.citation.startPage227
gi.conference.date20.-22. September 2017
gi.conference.locationDarmstadt, Germany
gi.conference.sessiontitleFurther Conference Contributions

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
paper22.pdf
Größe:
171.92 KB
Format:
Adobe Portable Document Format