Zeitschriftenartikel

Real-time Image-based Localization for Hand-held 3D-modeling

Vorschaubild nicht verfügbar
Volltext URI
Dokumententyp
Text/Journal Article
Datum
2010
Zeitschriftentitel
ISSN der Zeitschrift
Bandtitel
Quelle
KI - Künstliche Intelligenz: Vol. 24, No. 3
Verlag
Springer
Zusammenfassung
We present a self-referencing hand-held scanning device for vision-based close-range 3D-modeling. Our approach replaces external global tracking devices with ego-motion estimation directly from the camera used for reconstruction. The system is capable of online estimation of the 6DoF pose on hand-held devices with high motion dynamics especially in rotational components. Inertial information supports directly the tracking process to allow for robust tracking and feature management in highly dynamic environments. We introduce a weighting function for landmarks that contribute to the pose estimation increasing the accuracy of the localization and filtering outliers in the tracking process. We validate our approach with experimental results showing the robustness and accuracy of the algorithm. We compare the results to external global referencing solutions used in current modeling systems.
Beschreibung
Mair, Elmar; Strobl, Klaus H.; Bodenmüller, Tim; Suppa, Michael; Burschka, Darius (2010): Real-time Image-based Localization for Hand-held 3D-modeling. KI - Künstliche Intelligenz: Vol. 24, No. 3. Springer. PISSN: 1610-1987. pp. 207-214
Zitierform
DOI
Tags