Logo des Repositoriums
 

Can point-cloud based neural networks learn fingerprint variability?

dc.contributor.authorDominik Söllinger, Robert Jöchl
dc.contributor.editorBrömme, Arslan
dc.contributor.editorDamer, Naser
dc.contributor.editorGomez-Barrero, Marta
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorSequeira Ana F.
dc.contributor.editorTodisco, Massimiliano
dc.contributor.editorUhl, Andreas
dc.date.accessioned2022-10-27T10:19:31Z
dc.date.available2022-10-27T10:19:31Z
dc.date.issued2022
dc.description.abstractSubject- and environmental-specific variations affect the fingerprint recognition process. Quality metrics are capable of detecting and rating severe degradations. However, measuring natural variability, occurring during different fingerprint acquisitions, is not in the scope of these metrics. This work proposes the use of genuine comparison scores as a measure of variability. It is shown that the publicly available PLUS-MSL-FP dataset exhibits large natural variations which can be used to distinguish between different acquisition sessions. Furthermore, it is showcased that point-cloud (set) based neural networks are promising candidates for processing fingerprint imagery as they provide precise control over the input parameters. Experiments show that point-cloud based neural networks are capable of distinguishing between the different sessions in the PLUS-MSL-FP dataset solely based on FP minutiae locations.en
dc.identifier.doi10.1109/BIOSIG55365.2022.9897050
dc.identifier.isbn978-3-88579-723-4
dc.identifier.pissn1617-5470
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39707
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-329
dc.subjectfingerprint similarity
dc.subjectfingerprint variability
dc.subjectfingerprint ageing
dc.subjectdeep learning
dc.subjectpointcloud.
dc.titleCan point-cloud based neural networks learn fingerprint variability?en
dc.typeText/Conference Paper
gi.citation.endPage45
gi.citation.publisherPlaceBonn
gi.citation.startPage34
gi.conference.date14.-16. September 2022
gi.conference.locationDarmstadt
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
03-BIOSIG_2022_paper_54.pdf
Größe:
6.25 MB
Format:
Adobe Portable Document Format