Logo des Repositoriums
 

WristConduct: Biometric User Authentication Using Bone Conduction at the Wrist

dc.contributor.authorSehrt, Jessica
dc.contributor.authorLu, Feng Yi
dc.contributor.authorHusske, Leonard
dc.contributor.authorRoesler, Anton
dc.contributor.authorSchwind, Valentin
dc.contributor.editorMühlhäuser, Max
dc.contributor.editorReuter, Christian
dc.contributor.editorPfleging, Bastian
dc.contributor.editorKosch, Thomas
dc.contributor.editorMatviienko, Andrii
dc.contributor.editorGerling, Kathrin|Mayer, Sven
dc.contributor.editorHeuten, Wilko
dc.contributor.editorDöring, Tanja
dc.contributor.editorMüller, Florian
dc.contributor.editorSchmitz, Martin
dc.date.accessioned2022-08-31T09:42:58Z
dc.date.available2022-08-31T09:42:58Z
dc.date.issued2022
dc.description.abstractBiometric user authentication is an important factor to ensure security and privacy for personal devices. While many devices such as smartphones or laptops can be unlocked based on biometric data, smartwatches or other wrist-worn mobile devices still rely on knowledge-based schemes such as PINs or passwords. In a proof-of-concept study with 24 participants, we show that it is possible to identify individuals using sound waves passing through the wrist bones using a bone conduction speaker and a laryngophone (microphone). We tested support vector machines (SVMs) and artificial neural networks (ANNs) for binary classification. Using ANNs our method shows an authentication accuracy of 98.7%. We discuss the implications of integrating our approach into future devices and contribute with our findings in doing the first step for continuous passive user authentication at the wrist.en
dc.description.urihttps://dl.acm.org/doi/10.1145/3543758.3547542en
dc.identifier.doi10.1145/3543758.3547542
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39236
dc.language.isoen
dc.publisherACM
dc.relation.ispartofMensch und Computer 2022 - Tagungsband
dc.relation.ispartofseriesMensch und Computer
dc.subjectUser Authentication
dc.subjectBiometrics
dc.subjectWrist-Worn Device
dc.subjectBone Conduction
dc.subjectMachine Learning
dc.titleWristConduct: Biometric User Authentication Using Bone Conduction at the Wristen
dc.typeText/Conference Paper
gi.citation.endPage365
gi.citation.publisherPlaceNew York
gi.citation.startPage361
gi.conference.date4.-7. September 2022
gi.conference.locationDarmstadt
gi.conference.sessiontitleMCI-POSTER
gi.document.qualitydigidoc

Dateien