Privacy Evaluation Protocols for the Evaluation of Soft-Biometric Privacy-Enhancing Technologies
dc.contributor.author | Terhörst, Philipp | |
dc.contributor.author | Huber, Marco | |
dc.contributor.author | Damer, Naser | |
dc.contributor.author | Rot, Peter | |
dc.contributor.author | Kirchbuchner, Florian | |
dc.contributor.author | Struc, Vitomir | |
dc.contributor.author | Kuijper, Arjan | |
dc.contributor.editor | Brömme, Arslan | |
dc.contributor.editor | Busch, Christoph | |
dc.contributor.editor | Dantcheva, Antitza | |
dc.contributor.editor | Raja, Kiran | |
dc.contributor.editor | Rathgeb, Christian | |
dc.contributor.editor | Uhl, Andreas | |
dc.date.accessioned | 2020-09-16T08:25:45Z | |
dc.date.available | 2020-09-16T08:25:45Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Biometric data includes privacy-sensitive information, such as soft-biometrics. Soft-biometric privacy enhancing technologies aim at limiting the possibility of deducing such information. Previous works proposed several solutions to this problem using several different evaluation processes, metrics, and attack scenarios. The absence of a standardized evaluation protocol makes a meaningful comparison of these solutions difficult. In this work, we propose privacy evaluation protocols (PEPs) for privacy-enhancing technologies (PETs) dealing with soft-biometric privacy. Our framework evaluates PETs in the most critical scenario of an attacker that knows and adapts to the systems privacy-mechanism. Moreover, our PEPs differentiate between PET of learning-based or training-free nature. To ensure that our protocol meets the highest standards in both cases, it is based on Kerckhoffs‘s principle of cryptography. | en |
dc.identifier.isbn | 978-3-88579-700-5 | |
dc.identifier.pissn | 1617-5468 | |
dc.identifier.uri | https://dl.gi.de/handle/20.500.12116/34330 | |
dc.language.iso | en | |
dc.publisher | Gesellschaft für Informatik e.V. | |
dc.relation.ispartof | BIOSIG 2020 - Proceedings of the 19th International Conference of the Biometrics Special Interest Group | |
dc.relation.ispartofseries | Lecture Notes in Informatics (LNI) - Proceedings, Volume P-306 | |
dc.subject | Face | |
dc.subject | soft-biometric privacy | |
dc.subject | privacy-enhancing technologies | |
dc.subject | evaluation protocols | |
dc.title | Privacy Evaluation Protocols for the Evaluation of Soft-Biometric Privacy-Enhancing Technologies | en |
dc.type | Text/Conference Paper | |
gi.citation.endPage | 222 | |
gi.citation.publisherPlace | Bonn | |
gi.citation.startPage | 215 | |
gi.conference.date | 16.-18. September 2020 | |
gi.conference.location | International Digital Conference | |
gi.conference.sessiontitle | Further Conference Contributions |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- BIOSIG_2020_paper_33_update.pdf
- Größe:
- 488.84 KB
- Format:
- Adobe Portable Document Format