Logo des Repositoriums
 

DeDiM: De-identification using a diffusion model

dc.contributor.authorHidetsugu Uchida, Narishige Abe and Shigefumi Yamada
dc.contributor.editorBrömme, Arslan
dc.contributor.editorDamer, Naser
dc.contributor.editorGomez-Barrero, Marta
dc.contributor.editorRaja, Kiran
dc.contributor.editorRathgeb, Christian
dc.contributor.editorSequeira Ana F.
dc.contributor.editorTodisco, Massimiliano
dc.contributor.editorUhl, Andreas
dc.date.accessioned2022-10-27T10:19:33Z
dc.date.available2022-10-27T10:19:33Z
dc.date.issued2022
dc.description.abstractAs a countermeasure against malicious authentication in a face recognition system using a face image obtained from SNS or the like, de-identification methods based on adversarial example have been studied. However, since adversarial example directly uses the gradient information of a face recognition model, it is highly dependent on the model, and a de-identification effect and image quality are difficult to achieve for an unknown recognition model. In this study, we propose a novel de-identification method based on a diffusion model, which has high generalizability to an unknown recognition model by applying minute changes to face shapes. Experiments using LFW showed that the proposed method has a higher de-identification effect for unknown models and better image quality than a conventional method using adversarial example.en
dc.identifier.doi10.1109/BIOSIG55365.2022.9896972
dc.identifier.isbn978-3-88579-723-4
dc.identifier.pissn1617-5474
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/39717
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofBIOSIG 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-329
dc.subjectFace recognition
dc.subjectde-identification
dc.subjectdiffusion model
dc.titleDeDiM: De-identification using a diffusion modelen
dc.typeText/Conference Paper
gi.citation.endPage79
gi.citation.publisherPlaceBonn
gi.citation.startPage72
gi.conference.date14.-16. September 2022
gi.conference.locationDarmstadt
gi.conference.sessiontitleRegular Research Papers

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
07-BIOSIG_2022_paper_32.pdf
Größe:
425.93 KB
Format:
Adobe Portable Document Format