Logo des Repositoriums
 

Entwicklung eines Berechnungsmodells zur automatischen Lahmheitserkennung

dc.contributor.authorLorenzini, Isabella
dc.contributor.authorGrimm, Katharina
dc.contributor.authorHaidn, Bernhard
dc.contributor.editorGandorfer, Markus
dc.contributor.editorMeyer-Aurich, Andreas
dc.contributor.editorBernhardt, Heinz
dc.contributor.editorMaidl, Franz Xaver
dc.contributor.editorFröhlich, Georg
dc.contributor.editorFloto, Helga
dc.date.accessioned2020-03-04T13:06:27Z
dc.date.available2020-03-04T13:06:27Z
dc.date.issued2020
dc.description.abstractDie Früherkennung von Lahmheit spielt bei der Vermeidung von Leistungseinbußen und Leiden für die Tiere eine wesentliche Rolle. In der vorliegenden Studie wurden auf vier Praxisbetrieben und einem Versuchsbetrieb Verhaltens- und Leistungsdaten sowie Daten zur Klauengesundheit von 638 Tieren gesammelt. Anhand der erfassten Daten wurde das Enet-BETA Modell, das eine Genauigkeit von 0,61 AUC[1] aufwies, und das gemischte lineare Modell, das eine AUC = 0,83 aufwies, als Vorhersagemodelle für Lahmheiten bei Milchkühen überprüft.de
dc.identifier.isbn978-3-88579-693-0
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/31887
dc.language.isode
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartof40. GIL-Jahrestagung, Digitalisierung für Mensch, Umwelt und Tier
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-299
dc.subjectLahmheit
dc.subjectVorhersagemodell
dc.subjectprecision livestock farming
dc.titleEntwicklung eines Berechnungsmodells zur automatischen Lahmheitserkennungde
dc.typeText/Conference Paper
gi.citation.endPage162
gi.citation.publisherPlaceBonn
gi.citation.startPage157
gi.conference.date17.-18. Februar 2020
gi.conference.locationWeihenstephan, Freising

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GIL_2020_Lorenzini_157-162.pdf
Größe:
126.23 KB
Format:
Adobe Portable Document Format