Logo des Repositoriums
 

Constructing and Extending Description Logic Ontologies using Methods of Formal Concept Analysis

dc.contributor.authorKriegel, Francesco
dc.date.accessioned2021-04-23T09:35:32Z
dc.date.available2021-04-23T09:35:32Z
dc.date.issued2020
dc.description.abstractMy thesis describes how methods from Formal Concept Analysis can be used for constructing and extending description logic ontologies. In particular, it is shown how concept inclusions can be axiomatized from data in the description logics $$\mathcal {E}\mathcal {L}$$ E L , $$\mathcal {M}$$ M , $$\textsf {Horn}$$ Horn - $$\mathcal {M}$$ M , and $$\textsf{Prob}\text{-}\mathcal {E}\mathcal {L}$$ Prob - E L . All proposed methods are not only sound but also complete, i.e., the result not only consists of valid concept inclusions but also entails each valid concept inclusion. Moreover, a lattice-theoretic view on the description logic $$\mathcal {E}\mathcal {L}$$ E L is provided. For instance, it is shown how upper and lower neighbors of $$\mathcal {E}\mathcal {L}$$ E L concept descriptions can be computed and further it is proven that the set of $$\mathcal {E}\mathcal {L}$$ E L concept descriptions forms a graded lattice with a non-elementary rank function.de
dc.identifier.doi10.1007/s13218-020-00673-8
dc.identifier.pissn1610-1987
dc.identifier.urihttp://dx.doi.org/10.1007/s13218-020-00673-8
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/36312
dc.publisherSpringer
dc.relation.ispartofKI - Künstliche Intelligenz: Vol. 34, No. 3
dc.relation.ispartofseriesKI - Künstliche Intelligenz
dc.subjectAxiomatization
dc.subjectConcept inclusion
dc.subjectDescription logic
dc.subjectFormal concept analysis
dc.titleConstructing and Extending Description Logic Ontologies using Methods of Formal Concept Analysisde
dc.typeText/Journal Article
gi.citation.endPage403
gi.citation.startPage399

Dateien